CHEM1109 2007-N-7 November 2007

Marks 6

phosphate group in a dehydration-condensation reaction:	
glucose(aq) + $H_2PO_4^-$ (aq)	[glucose phosphate] (aq) + H ₂ O(l)
The free energy change associated with this reaction is $\Delta G^{\circ} = 13.8 \text{ kJ mol}^{-1}$. The reaction is driven forwards by harnessing the free energy associated with the hydrolysis of adenosine triphosphate, ATP ⁴⁻ , to adenosine diphosphate, ADP ³⁻ :	
$ATP^{4-}(aq) + H_2O(l) \iff ADP^{3-}(aq)$) + $H_2PO_4^-(aq)$ $\Delta G^\circ = -30.5 \text{ kJ mol}^{-1}$
The overall reaction is thus:	
glucose(aq) + ATP ⁴⁻ (aq) Calculate the equilibrium constant associatemperature (37 °C).	[glucose phosphate] (aq) + ADP (aq) ated with this overall reaction at body
	Answer:
This overall equilibrium reaction is investigated by adding 0.0100 mol of ATP ⁴⁻ to a flask containing 175 mL of a 0.0500 M aqueous solution of glucose at 37 °C. What percentage of the ATP ⁴⁻ will have been consumed when the system reaches equilibrium?	
	A 970/
	Answer: 87%
Suggest two simple ways of further reduc	
Suggest two simple ways of further reduc	
Suggest two simple ways of further reduc	