3

• Ascorbic acid (Vitamin C) is a monoprotic acid of formula $C_6H_8O_6$. Calculate the pH of a 0.10 M solution of ascorbic acid, given the K_a of ascorbic acid is 8.0×10^{-5} M.

s ascorbic acid is	ascorbic acid is a weak acid, $[H_3O^+]$ must be calculated:					
	C ₆ H ₈ O ₆	H ₂ O		H_3O^+	$C_6H_7O_6^-$	
initial	0.1	large		0	0	
change	- <i>x</i>	negligible		+x	+x	
final	0.10 - x	large		x	x	

The equilibrium constant K_a is given by:

$$K_{a} = \frac{[H_{3}O^{+}(aq)][C_{6}H_{7}O_{6}^{-}(aq)]}{[C_{6}H_{78}O_{6}(aq)]} = \frac{x^{2}}{(0.10-x)}$$

As $K_a = 8.0 \times 10^{-5}$ is very small, $0.10 - x \sim 0.10$ and hence:

$$x^{2} = 0.1 \times (8.0 \times 10^{-5})$$
 or $x = 2.8 \times 10^{-3}$ M = [H₃O⁺(aq)]

Hence, the pH is given by:

$$pH = -log_{10}[H_3O^+(aq)] = -log_{10}[0.0028] = 2.5$$

Answer: **pH** = **2.5**

Write equations to show what happens to a buffer solution containing equimolar amounts of C₆H₅CH₂COOH and C₆H₅CH₂COOK when:
(a) H₃O⁺ is added, (b) OH⁻ is added.

(a)

 $C_6H_5CH_2COO^{-}(aq) + H_3O^{+}(aq) \rightarrow C_6H_5CH_2COOH(aq) + H_2O(l)$

(b)

 $C_{6}H_{5}CH_{2}COOH(aq) + OH^{-}(aq) \rightarrow C_{6}H_{5}CH_{2}COO^{-}(aq) + H_{2}O(l)$