- Ascorbic acid (Vitamin C) is a monoprotic acid of formula $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$. Calculate the pH of a 0.10 M solution of ascorbic acid, given the K_{a} of ascorbic acid is $8.0 \times 10^{-5} \mathrm{M}$.

As ascorbic acid is a weak acid, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$must be calculated:

	$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$	$\mathrm{H}_{\mathbf{2}} \mathrm{O}$	\rightleftharpoons	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{6}{ }^{-}$
initial	0.1	large		0	0
change	$-x$	negligible		$+x$	$+x$
final	$0.10-x$	large		x	x

The equilibrium constant K_{a} is given by:

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]\left[\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{6}^{-}(\mathrm{aq})\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{78} \mathrm{O}_{6}(\mathrm{aq})\right]}=\frac{x^{2}}{(0.10-x)}
$$

As $K_{\mathrm{a}}=8.0 \times 10^{-5}$ is very small, $0.10-x \sim 0.10$ and hence:

$$
x^{2}=0.1 \times\left(8.0 \times 10^{-5}\right) \text { or } x=2.8 \times 10^{-3} \mathrm{M}=\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]
$$

Hence, the $\mathbf{p H}$ is given by:

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]=-\log _{10}[0.0028]=2.5
$$

$$
\text { Answer: } \mathbf{p H}=\mathbf{2 . 5}
$$

- Write equations to show what happens to a buffer solution containing equimolar amounts of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOK}$ when:
(a) $\mathrm{H}_{3} \mathrm{O}^{+}$is added,
(b) OH^{-}is added.
(a)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(b)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

