CHEM1405	20)06-J-6		June 2006	
 Butyric acid, CH₃ The pK_a of butyric (a) What is the pH 	CH ₂ CH ₂ COOH, is c acid is 4.83. I of a 0.10 M water	found in rat	ncid butter and par butyric acid?	mesan cheese.	Mark 6
As pK _a = -logK _a concentration of	$= 4.83, K_a = 10^{-4.8}$ C[HA(aq)] = 0.10	³³ . Denoting M. The read	butyric acid as H ction table is then	IA, the initial :	
	[HA(aq)]	₽	[H ⁺ (aq)]	[A ⁻ (aq)]	
t = 0	0.10.		0	0	
change	-X		+ x	+ x	
equilibrium	0.10 - x		X	X	
Hence, $K_a = \frac{[H^+]}{}$	$\frac{[(aq)][A^{(aq)}]}{[HA(aq)]} = \frac{1}{6}$	$\frac{(\mathbf{x})(\mathbf{x})}{0.10 \cdot \mathbf{x}} = \frac{\mathbf{x}}{0.1}$	2 0-x		
As K _z is small,	the amount of di	ssociation,	x, is also small s	$0.10 - x \sim 0.10.$	
Using this appro	eximation , $\mathbf{K}_{z} = \frac{2}{0}$	$\frac{x^2}{.10} = 10^{-4.83}$ h	ence x = 1.22 × 10) ⁻³ M.	
As $\mathbf{x} = [\mathbf{H}^+(\mathbf{aq})]$,	$\mathbf{pH} = -\mathbf{log}[\mathbf{H}^+(\mathbf{aq})]$] = -log(1.22)	$2 \times 10^{-3}) = 2.92$		
		Answ	er: 2.92		1

(b) Calculate the pH of the solution formed when 0.050 mol of NaOH(s) is added to 1.0 L of 0.10 M butyric acid.

As NaOH is a strong base, it will dissociate completely and each mole of OH⁻ will react with butyric acid to form one mole of A⁻(aq).

1.0 L of 0.10 M HA contains 0.10 mol. After addition of 0.050 mol of OH⁻, the number of moles of HA = (0.10 - 0.050) = 0.05 mol and the number of moles of A⁻ = 0.050 mol.

As 1.0 L of solution is present, [HA(aq)] = 0.05 M and $[A^{-}(aq)] = 0.05$ M. Substituting into the expression for K_a gives:

$$\mathbf{K}_{\mathbf{a}} = \frac{[\mathbf{H}^{+}(\mathbf{aq})][\mathbf{A}^{-}(\mathbf{aq})]}{[\mathbf{H}\mathbf{A}(\mathbf{aq})]} = \frac{[\mathbf{H}^{+}(\mathbf{aq})] \times (0.05)}{(0.05)} = 10^{-4.83} \text{ so } [\mathbf{H}^{+}(\mathbf{aq})] = 1.5 \text{ M}$$

Hence, $pH = -log[H^+(aq)] = 4.83$

Answer: 4.83

(c) Using equations, comment on how the final solution in (b) will respond to additions of small amounts of acid or base in comparison to 1 L of water.

Solution (b) consists of a mixture of a weak acid and its conjugate base: it is a buffer system and will resist changes in pH. If acid is added, the system can respond by removing it using A⁻:

 $H^+(aq) + A^-(aq) \rightarrow HA(aq)$

If base is added, the system can respond by removing it using HA:

 $OH^{-}(aq) + HA(aq) \rightarrow H_2O(l) + A^{-}(aq)$