• Glucose is a common food source. The net reaction for its metabolism in humans is:		Marks 5
$C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)$		U
Calculate ΔH° for this reaction given the following heats of formation.		
$\Delta H^{\circ}_{f} (C_{6}H_{12}O_{6}(s)) = -1274 \text{ kJ mol}^{-1}, \Delta H^{\circ}_{f} (CO_{2}(g)) = -393 \text{ kJ mol}^{-1} \text{ and} \\ \Delta H^{\circ}_{f} (H_{2}O(l)) = -285 \text{ kJ mol}^{-1}$		
l A	Answer:	
If the combustion of glucose is carried out in air, water is produced as a vapour. Calculate the ΔH° for the combustion of glucose in air given that		
$H_2O(l) \rightarrow H_2O(g)$	$\Delta H^{\circ} = +44 \text{ kJ mol}^{-1}$	
<i>I</i>	Answer:	
Will ΔS be different for the two oxidation reactions? If so, how will it differ and why?		