• Codeine, a cough suppressant extracted from crude opium, is a weak base with a $pK_b = 5.79$. What is the pH of a 0.020 M solution of codeine?

As codeine, is a weak base and so [OH⁻] must be calculated. for example using a reaction table:

	codeine	H ₂ O	+	codeineH ⁺	OH.
initial	0.020	large		0	0
change	- <i>x</i>	negligible		+x	+x
final	0.020 - x	large		x	x

The equilibrium constant K_b is given by:

$$K_{\rm b} = \frac{[\rm codeineH^+][OH^=]}{[\rm codeine]} = \frac{x^2}{(0.020 - x)}$$

As $pK_b = -\log_{10}K_b = 5.79$, $K_b = 10^{-5.79}$. Hence,

$$\frac{x^2}{(0.020-x)} = 10^{-5.79}$$

As K_b is very small, $0.020 - x \sim 0.020$ and hence:

$$x^2 = 0.020 \times 10^{-5.79}$$
 or $x = 1.8 \times 10^{-4} \text{ M} = [\text{OH}^-(\text{aq})]$

Hence, the pOH is given by:

$$pOH = -log_{10}[OH^{-}] = -log_{10}[1.8 \times 10^{-4}] = 3.74$$

Finally, pH + pOH = 14.00 so

pH = 14.0 - 3.74 = 10.26

Answer: 10.26

• A buffer solution is formed with 0.250 M CH₃COOH and 0.350 M CH₃COONa. What is the pH of this buffer solution? (K_a of acetic acid = 1.8×10^{-5} M.)

The pH of a buffer solution is given by the Henderson-Hasselbalch equation:

$$\mathbf{pH} = \mathbf{pK}_{\mathbf{a}} + \log\left(\frac{\mathbf{base}}{\mathbf{acid}}\right)$$

As $pK_a = -log_{10}K_a = -log_{10}(1.8 \times 10^{-5}) = 4.74$. With [base] = [CH₃COONa] = 0.350 M and [acid] = [CH₃COOH] = 0.250 M,

ANSWER CONTINUES ON THE NEXT PAGE

3

$$pH = 4.74 + log\left(\frac{0.350}{0.250}\right) = 4.89$$

As the buffer contains a higher concentration of base than acid, the $pH > pK_a$.

Answer: 4.89

Calculate the pH of the solution formed when 6.3×10^{-2} mol of NaOH is added to 1.0 L of the buffer solution.

In a 1.0 L solution of the buffer, there is 0.250 mol of CH₃COOH and 0.350 mol of CH₃COO⁻.

The OH⁻ will react with the CH₃COOH to produce CH₃COO⁻. The concentration of the former will therefore decrease whilst the concentration of the latter will increase. After the OH⁻ is added:

number of moles of CH₃COOH = $(0.250 - 6.3 \times 10^{-2})$ M = 0.187 mol number of moles of CH₃COO⁻ = $(0.350 + 6.3 \times 10^{-2})$ M = 0.413 mol

As the volume of solution does not change, these are also the new acid and base concentrations. Hence, the buffer now has:

$$pH = 4.74 + \log\left(\frac{0.413}{0.187}\right) = 5.09$$

As base has been added, there is an increase in the pH. As it is being added to a buffer system, this change is small. Addition of this quantity of base to water would increase the pH by 1.20 units.

Answer: 5.09