Marks • Stearic acid, $C_{18}H_{36}O_2$, is a fatty acid common in animal fats and vegetable oils and is 5 a valuable energy source for mammals. The net reaction for its metabolism in humans is: $C_{18}H_{36}O_2(s) + 26O_2(g) \rightarrow 18CO_2(g) + 18H_2O(l)$ Calculate ΔH° for this reaction given the following heats of formation. Compound $C_{18}H_{36}O_2(s)$ $CO_2(g)$ $H_2O(l)$ $\Delta_{\rm f} H^{\circ} / \rm kJ \ mol^{-1}$ -948 -393 -285Using $\Delta_{rxn}H^{\circ} = \Sigma m \Delta_f H^{\circ}$ (products) - $\Sigma n \Delta_f H^{\circ}$ (reactants), the enthalpy of the combustion of the reaction with excess O₂ is: $\Delta H^{\circ} = (18\Delta_{\rm f}H^{\circ}(\rm CO_2(g) + 18\Delta_{\rm f}H^{\circ}(\rm H_2O(l)) - (\Delta_{\rm f}H^{\circ}(\rm C_{18}\rm H_{36}O_2(s)))$ $= [(18 \times -393 + 18 \times -285) - (-948)] \text{ kJ mol}^{-1} = -11300 \text{ kJ mol}^{-1}$ As $O_2(g)$ is an element in its standard state, its $\Delta_f H^\circ$ is zero. $\Delta H^{\circ} = -11300 \text{ kJ mol}^{-1}$ If the combustion of stearic acid is carried out in air, water is produced as a vapour. Calculate the ΔH° for the combustion of stearic acid in air given that: $\Delta H^{\circ} = +44 \text{ kJ mol}^{-1}$ $H_2O(1) \rightarrow H_2O(g)$ The reaction now needs vapourisation of $18H_2O(l)$ which requires *input* of (18×10^{-6}) 44) kJ mol⁻¹. The combustion enthalpy is reduced to: $\Delta H^{\circ} = (-11300 \text{ kJ mol}^{-1}) + (18 \times 44 \text{ kJ mol}^{-1}) = -10500 \text{ kJ mol}^{-1}$ $\Delta H^{\circ} = -10500 \text{ kJ mol}^{-1}$ Will ΔS be different for the two oxidation reactions? If so, how will it differ and why?

 ΔS will be greater for the air-oxidation as the product $H_2O(g)$ has a much greater entropy than the product $H_2O(l)$ - gases are much more disordered than liquids.

Calculate the mass of carbon dioxide produced by the complete oxidation of 1.00 g of stearic acid.

The molar mass of stearic acid, $C_{18}H_{36}O_2$, is:

molar mass = $(18 \times 12.01 \text{ (C)} + 36 \times 1.008 \text{ (H)} + 2 \times 16.00 \text{ (H)}) \text{ g mol}^{-1}$ = 284.47 g mol⁻¹

ANSWER CONTINUES ON THE NEXT PAGE

The number of moles in 1.00 g is therefore:

number of moles = mass / molar mass = $(1.00 \text{ g}) / (284.47 \text{ g mol}^{-1}) = 0.00353 \text{ mol}$

The chemical equation shows that 18 mol of $CO_2(g)$ are produced from every 1 mol of $C_{18}H_{36}O_2(s)$. The number of moles of $CO_2(g)$ produced is therefore (18 × 0.00353 mol) = 0.06328 mol.

The molar mass of CO₂ is $(12.01 (C) + 2 \times 16.00 (O))$ g mol⁻¹ = 44.01 g mol⁻¹. The mass of CO₂ produced is therefore:

mass of CO_2 = number of moles × molar mass = (0.06328 mol) × (44.01 g mol⁻¹) = 2.78 g

Answer: 2.78 g