• The concentration of a dissolved gas is related to its partial pressure by c = kp. What is the concentration of CO₂ dissolved in blood if the partial pressure of CO₂ in the lungs is 0.053 atm? The *k* for CO₂ is 0.034 mol L⁻¹ atm⁻¹.

Using c = kp,

 $c = (0.034 \text{ mol } \text{L}^{-1} \text{ atm}^{-1})(0.053 \text{ atm}) = 0.0018 \text{ mol } \text{L}^{-1}$

Answer: 0.0018 mol L⁻¹

Calculate the pH of blood if all of this CO₂ reacted to give H₂CO₃. The K_a of H₂CO₃ is 4.5×10^{-7} .

If $[H_2CO_3(aq)] = 0.0018$ mol L⁻¹, the pH can be calculated using the reaction table:

	H ₂ CO ₃	H ₂ O	 H_3O^+	HCO ₃ ⁻
initial	0.0018	large	0	0
change	- <i>x</i>	negligible	+x	+x
final	0.0018 - x	large	x	x

The equilibrium constant K_a is given by:

$$K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+][{\rm HCO}_3^-]}{[{\rm H}_2{\rm CO}_3]} = \frac{x^2}{0.0018 - x}$$

As $K_a = 4.5 \times 10^{-7}$ and is very small, $0.0018 - x \sim 0.0018$ and hence:

$$x^2 = 0.0018 \times (4.5 \times 10^{-7})$$
 or $x = 2.8 \times 10^{-5} \text{ M} = [\text{H}_3\text{O}^+]$

Hence:

$$pH = -log_{10} [H_3O^+(aq)] = -log_{10}(2.8 \times 10^{-5}) = 4.54$$

Answer: 4.54

Hyperventilation results in a decrease in the partial pressure of CO_2 in the lungs. What effect will this have on the pH of the blood? Use a chemical equation to illustrate your answer.

If the CO_2 partial pressure decreases, the equilibrium below will shift to the left. This will decrease $[H^+(aq)]$ and the pH will increase.

 $CO_2(aq) + H_2O \iff H_2CO_3(aq) \iff HCO_3^-(aq) + H^+(aq)$

ANSWER CONTINUES ON THE NEXT PAGE

Marks 5 The pH of blood is maintained around 7.4 by the H_2CO_3 / HCO_3^- buffer system. Explain how a buffer works, illustrating your answer with chemical equations.

A buffer resists changes in pH. It contains substantial quantities of a weak acid and its conjugate base. In the H_2CO_3/HCO_3^- buffer, added acid is removed by the reaction:

 $\text{HCO}_3^{-}(\text{aq}) + \text{H}^+(\text{aq}) \rightarrow \text{H}_2\text{CO}_3(\text{aq})$

Added base is removed by the reaction:

 $H_2CO_3(aq) + OH^-(aq) \rightarrow HCO_3^-(aq) + H_2O$