CHEM1405

1June 2003

• The table below gives the concentrations of C_2H_4O as a function of time at 690 K for the following reaction:

$C_2H_4O(g) \rightarrow$	$CH_4(g) + CO(g)$	
[C ₂ H ₄ O] (M)	time (mins)	$\frac{1}{t} \left(\ln[\mathbf{A}]_0 - \ln[\mathbf{A}] \right)$
0.0860	0	
0.0465	50	0.012298
0.0355	72	0.012289
0.0274	93	0.012299
0.0174	130	0.012291

The reaction is first order with respect to C_2H_4O .

Use the above data to determine the rate constant and the half-life of the reaction.

For a first order reaction,

$$\ln[A] = \ln[A]_0 - kt$$
 or $k = \frac{1}{t} (\ln[A]_0 - \ln[A])$ and $t_{1/2} = \frac{\ln 2}{k}$

A plot of $\ln[A]$ vs. t has gradient k. Alternatively, the value of $\frac{1}{t}(\ln[A]_0 - \ln[A])$ is included in the table above for each measurement. To 3 significant figures:

k = 0.0123 min⁻¹ and hence
$$t_{1/2} = \frac{\ln 2}{0.0123} = 56.4$$
 min

 $k = 0.0123 \text{ min}^{-1}$

 $t_{1/2} = 56.4 \text{ min}$

How long does it take for 75% of the C_2H_4O to react?

Using $\ln[A] = \ln[A]_0 - kt$, $\ln\left(\frac{[A]_0}{[A]}\right) = kt$ When 75% has reacted, $[A] = 0.25 \times [A]_0$:

 $\ln(1/0.25) = (0.0123 \text{ min}^{-1})t$ so t = 113 min.

Answer: 113 min

CHEM1405 2005	-J-6	June 2005
• Sevoflurane is an anaesthetic with a hall long does it take for the concentration of 0.025 mM to one hundredth of this value	of sevoflurane in brain tissue t	
For the first order decay of sevoflur	ane (S),	
$\ln[S] = \ln[S]_0 - kt$ and $t_{1/2} = \frac{1}{2}$	$\frac{n2}{k}$	
Hence $k = \frac{\ln 2}{2.3 \min}$. Using $[S]_0 = 0.02$	5 mM and [S] = 1/100 × 0.02	25 mM:
$\ln(0.00025) = \ln(0.025) - \frac{\ln 2}{2.3 \text{ min}}$	$\frac{1}{n} \times t$	
SO		
$t = 15 \min$		
	Answer: 15 min	

Phosgene is	s a toxic gas pre	epared by the re	eaction of carbo	n monoxide with o	chlorine.
		$CO(g) + Cl_2(g)$	$(x) \rightarrow \text{COCl}_2(g)$	l de la companya de l	
The follow	ing data were o	btained in a kin	etics study of it	s formation at 150) °C.
	Experiment	Initial [CO] (mol L^{-1})	Initial [Cl ₂] (mol L^{-1})	Initial rate (mol $L^{-1} s^{-1}$)	
	1	1.00	0.100	1.29×10^{-3}	
	2	0.100	0.100	1.33×10^{-4}	
	3	0.100	1.00	1.30×10^{-3}	
	4	0.100	0.0100	1.32×10^{-5}	
rite the ra	ate law for the f	formation of ph	osgene at 150 °	C.	-
etween ex ctor of te) and (3), [CC to a tenfold inc		and [Cl ₂] is increated in the interaction in the reaction in	
		21.			
		2].			
	rate law is,	2].			
Hence, the		-			
Hence, the rate =	rate law is, k[CO(g)][Cl ₂ (-	150 °C.		
Hence, the rate = Calculate th (n experim (Cl ₂] = 0.10 (1.29 ×	rate law is, $k[CO(g)][Cl_2(g)]$ the value of the second secon	g)] rate constant at = 1.29×10^{-3} mostituting into t^{-1}) = $k \times (1.00$ m			ol L ⁻¹ and
Hence, the rate = Calculate th In experim [Cl ₂] = 0.10 (1.29 × k = 1.2 The same 1 × 10 ⁻² mol ⁻²	rate law is, rate law is, $k[CO(g)][Cl_2(g)]$ me value of the second	g)] rate constant at = 1.29 × 10 ⁻³ m postituting into m therefore k^{-1} = $k \times (1.00 \text{ m})$ L s ⁻¹ $k^{k} = 1.33 \times 10^{-2}$	nol $L^{-1} s^{-1}$ whe the rate law giv nol L^{-1} × (0.10 mol ⁻¹ L s ⁻¹ , 1.3 c) and (4) respe	ves,	5 ⁻¹ and 1.32
Hence, the rate = Calculate th In experim [Cl ₂] = 0.10 (1.29 × k = 1.2 The same 1 × 10 ⁻² mol ⁻²	rate law is, rate law is, $k[CO(g)][Cl_2(g)]$ me value of the second	g)] rate constant at = 1.29 × 10 ⁻³ m postituting into m k^{-1} = $k \times (1.00 \text{ m})$ L s ⁻¹ $k = 1.33 \times 10^{-2}$ priments (2), (3)	nol $L^{-1} s^{-1}$ whe the rate law giv nol L^{-1}) × (0.10 mol ⁻¹ L s ⁻¹ , 1.3) and (4) respe D^{-2} -mol ⁻¹ L s ⁻¹ .	ves, 0 mol L ⁻¹) 0 × 10 ⁻² mol ⁻¹ L s	5 ⁻¹ and 1.32

Calculate the rate of appearance of phosgene when $[CO] = [Cl_2] = 1.3$ M.

Using the rate law derived above. rate = $(1.3 \times 10^{-2} \text{ mol}^{-1} \text{ L s}^{-1}) \times [\text{CO}] \times [\text{Cl}_2]$ = $(1.3 \times 10^{-2} \text{ mol}^{-1} \text{ L s}^{-1}) \times (1.3 \text{ mol } \text{L}^{-1}) \times (1.3 \text{ mol } \text{L}^{-1})$ = $2.2 \times 10^{-2} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$ Answer: $2.2 \times 10^{-2} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$

• The radioactive isotope ^{99m}Tc has a half life of 6.0 hours. How much time after production of the ^{99m}Tc isotope do radiologists have to examine a patient if at least 25 % of the original activity is required to get useful exposures?

As the half life is 6.0 hours, the activity will be reduced to 50 % of its original value after 6.0 hours.

After a further 6.0 hours, it will be reduced by another 50 % and so will be 25% of its original value. Therefore 2 half lives are required: 12 hours.

Alternatively, the activity decreases with time according to the equation:

$$\ln\left(\frac{A_0}{A_t}\right) = kt.$$

If the activity has decreased to 25 %, $\frac{A_0}{A_t} = \frac{100}{25} = 4$. As $t_{1/2} = 6.0$ hours, the activity coefficient = $\ln 2 / t_{1/2}$. Therefore:

$$\ln 4 = \left(\frac{\ln 2}{6.0 \text{ hours}}\right) \times t \text{ so } t = 12 \text{ hours}$$

Answer: 12 hours

• Briefly explain the two factors necessary for a collision between two molecules to result in a reaction.

Marks 3

The molecules need to be orientated correctly and they need to have energy \geq the activation energy, E_a for a reaction to occur.

Briefly describe the relationship between the rate of a reaction and the activation energy for the reaction.

The relationships between the activation energy, E_a , the temperature, T, and the rate constant, k, are summarised by the Arrhenius equation, $k = A e^{-Ea/RT}$.

This shows that the higher the activation energy, the lower the rate constant and the lower the reaction rate.

• The radioactive isotope ^{99m}Tc has a half life of 6.0 hours. How much time after production of the ^{99m}Tc isotope do radiologists have to examine a patient if at least 35 % of the original activity is required to get useful exposures? If the half life is 6.0 hours, the activity coefficient, λ , is: $\lambda = \ln 2 / t_{1/2} = \ln 2 / (6.0 \text{ hours}) = 0.116 \text{ hours}^{-1}$ As the activity is proportional to the number of nuclei present, the activity at a time *t* is related to the original activity by: $\ln(A_0 / A_t) = \lambda t$ If $A_t = 0.35 \times A_0$ then: $\ln(1/0.35) = (0.116 \text{ hours}^{-1})t$ t = 9.1 hoursAnswer: 9.1 hours