• What quantity of heat is released when 15.2 g of propane (C_3H_8) is burnt according to the following equation?

 $C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + H_{2}O(l)$ $\Delta H = -2221 \text{ kJ mol}^{-1}$

The molar mass of C₃H₈ is (3×12.01 (C) + 8×1.008 (H)) g mol⁻¹ = 44.094 g mol⁻¹. Hence, a mass of 15.2 g corresponds to:

number of moles = $\frac{\text{mass}}{\text{molar mass}} = \frac{15.2 \text{ g}}{44.094 \text{ g mol}^{-1}} = 0.345 \text{ mol}$

As 2221 kJ of heat are generated by burning one mole, this quantity generates:

heat = $(0.345 \text{ mol}) \times (2221 \text{ kJ mol}^{-1}) = 766 \text{ kJ}$

• How much heat is evolved when 907 g of ammonia is produced according to the following equation? (Assume the reaction occurs at constant pressure.)	
$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$	$\Delta H = -91.8 \text{ kJ mol}^{-1}$
The molar mass of ammonia, NH ₃ , is 14.01 (N) + 3 × 1.008 (H) = 17.034 g mol ⁻¹ .	
Thus, the number of moles of ammonia is:	
number of moles = $\frac{\text{mass}(\text{in g})}{\text{molar mass}(\text{in g mol}^{-1})} = \frac{907 \text{ g}}{17.034 \text{ g mol}^{-1}} = 53.2 \text{ mol}$	
The chemical equation shows that when <i>two</i> moles are produced, $\Delta H = -91.8 \text{ kJ} \text{ mol}^{-1}$ and so half this value is evolved when <i>one</i> mole is produced.	
Hence, 53.2 mol will produce:	
heat produced = 91.8 kJ mol ⁻¹ × 0.5×53.2 mol = 2440 kJ = 2.44 MJ	
	Answer: 2440 kJ or 2.44 MJ

2004-J-2

June 2004

2

CHEM1405

Marks • The balanced equation for the complete oxidation of glucose to carbon dioxide and 3 water is given below. $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)$ Calculate the mass of carbon dioxide produced by the complete oxidation of 1.00 g of glucose. The molar mass of glucose is: $(6 \times 12.01 (C)) + (12 \times 1.008 (H)) + (6 \times 16.00 (O)) = 180.156$ 1.0 g of glucose corresponds to $\frac{\text{mass}}{\text{molar mass}} = \frac{1.00}{180.156} = 0.00555 \text{ mol}$ From the chemical equation, oxidation of 1 mol of glucose leads 6 mol of CO₂. Hence the number of moles of CO_2 produced is $6 \times 0.00555 = 0.0333$ mol. The molar mass of CO₂ is $(12.01 (C)) + (2 \times 16.00 (O)) = 44.01$ Therefore, the number of mass of CO₂ produced is: mass = number of moles \times molar mass = 0.0333 \times 44.01 = 1.47 g

Answer: 1.47 g

Calculate the volume of this mass of carbon dioxide at 0.50 atm pressure and 37 °C.

The ideal gas law gives PV = nRT, hence: $V = \frac{nRT}{P} = \frac{(0.0333) \times (0.08206) \times (273+37)}{(0.50)} = 1.69L$ Answer: 1.69 L