Marks 7

• Siderophores (from the Greek meaning 'iron carriers') are organic molecules produced by microorganisms to provide essential Fe³⁺ required for growth. The functional group (the group which binds Fe³⁺) of siderophores is shown below as tautomers I and II. Complete the table below, relating to the molecular geometry about the specified atoms in I and II.

Atom	Geometric arrangement of the electron pairs around the atom	Hybridisation of atom	Geometry of bonding electron pairs around atom
¹ C	tetrahedral	sp^3	tetrahedral
² N	tetrahedral	sp^3	trigonal pyramidal
³ C	trigonal planar	sp^2	trigonal planar
⁴ O	tetrahedral	sp ³	bent
⁵ N	trigonal planar	sp ²	bent

Desferal is a siderophore-based drug that is used in humans to treat iron-overload. One molecule of Desferal (molecular formula: $C_{25}H_{48}O_8N_6$) can bind one Fe^{3+} ion. A patient with iron-overload had an excess of 0.637 mM Fe^{3+} in his bloodstream. Assuming the patient has a total blood volume of 5.04 L, what mass of Desferal would be required to complex all of the excess Fe^{3+} ?

In 5.04 L, the number of moles of Fe^{3+} is given by the concentration × volume:

moles of
$$Fe^{3+} = (0.637 \times 10^{-3} \text{ mol L}^1) \times (5.04 \text{ L}) = 3.2105 \times 10^{-3} \text{ mol}$$

As each desferal molecule binds one Fe³⁺, this is also the number of moles of desferal that is required. The molar mass of desferal is:

molar mass =
$$(25\times12.01 \text{ (C)} + 48\times1.008 \text{ (H)} + 8\times16.00 \text{ (O)} + 6\times14.01 \text{ (N)}) \text{ g mol}^{-1}$$

= $560.964 \text{ g mol}^{-1}$

The mass of desferal required is then the number of moles \times molar mass:

mass of desferal =
$$(3.2105 \times 10^{-3} \text{ mol}) \times (560.964 \text{ g mol}^{-1}) = 1.80 \text{ g}$$

ANSWER: 1.80 g