
Marks	
5	

FORMULA	SYSTEMATIC NAME	OXIDATION NUMBER	NUMBER OF <i>d</i> ELECTRONS
<u>S</u> O ₃	sulphur trioxide	+VI	0
K <u>Mn</u> O ₄	potassium permanganate	+VII	0
CoCl ₂ ·6H ₂ O	cobalt(II) chloride hexahydrate	+II	7
(NH ₄) ₂ SO ₄	ammonium sulfate		

• Draw the Lewis structures, showing all valence electrons for the following species. Indicate which of the species have contributing resonance structures.

4

• A sample of carboxypeptidase (an enzyme) was purified and found on analysis to contain 0.191% by weight of zinc. What is the *minimum* molecular weight of the enzyme if we assume it is a monomer?

2

The enzyme must contain at least one zinc atom. If it contains one zinc atom, its contribution to the molar mass is 65.39 amu. If this is 0.191% of the total mass, the molar mass corresponding to 100% is:

0.191 % of molar mass = 65.39100% of molar mass = $65.39 / 0.00191 = 34240 \text{ g mol}^{-1}$

Answer: **34240 g mol**⁻¹ **or 34.24 kg mol**⁻¹