• Complete the following table. Give, as required, the formula, the systematic name, the oxidation number of the underlined atom and, where indicated, the number of <i>d</i> electrons for the element in this oxidation state.							Marks 5
FORMULA	SYSTEMATIC NAME			OXIDATION NUMBER		NUMBER OF <i>d</i> ELECTRONS	
$\underline{S}O_3$							
K <u>Mn</u> O ₄							
<u>Co</u> Cl₂·6H₂O							
	ammonium sulfate						
• Draw the Lewis structures, showing all valence electrons for the following species. Indicate which of the species have contributing resonance structures.							4
NO ₃ ⁻		CO ₂			N_2H_2		
Resonance: YES / NO		Resonance: YES / NO		Resonance: YES / NO			
• A sample of carboxypeptidase (an enzyme) was purified and found on analysis to contain 0.191% by weight of zinc. What is the <i>minimum</i> molecular weight of the enzyme if we assume it is a monomer?							2
		İ	Answer				
Allswei.							