• If 50 mL of a 0.10 M solution of AgNO₃ is mixed with 50 mL of a 0.040 M solution of BaCl₂, what mass of AgCl(s) will precipitate from the reaction?

Marks 3

The precipitation reaction, $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$, is a 1:1 reaction of $Ag^{+}(aq)$ and $Cl^{-}(aq)$ ions.

Number of moles of Ag^+ = concentration × volume = $0.10 \times \frac{50}{1000} = 0.0050$ mol

As each mole of BaCl₂(s) gives two moles of Cl (aq):

Number of moles of Cl⁻ =
$$2 \times 0.040 \times \frac{50}{1000} = 0.0040$$
 mol

 $Ag^{+}(aq)$ is present in excess so $Cl^{-}(aq)$ is the limiting reagent. Hence, 0.0040 mol of AgCl(s) will be formed.

The molar mass of AgCl(s) = (107.87 (Ag)) + (35.45 (Cl)) = 143.32.

The mass of AgCl(s) formed is:

mass = number of moles \times molar mass = 0.0040 \times 143.32 = 0.57 g

Answer: **0.57** g

What is the concentration of NO₃⁻ ions in the final solution from the reaction above?

The number of moles of NO_3 (aq) is 0.0050 mol. After mixing, the final solution has a volume of (50 + 50) = 100 mL. Hence, the concentration is:

[NO₃] =
$$\frac{\text{number of moles}}{\text{volume}} = \frac{0.0050}{100/1000} = 0.050 \text{ M}$$

Answer: **0.050 M**