3

٠	Consider the boiling points of the compounds 1-propanol, 1-propanethiol and
	1-propaneselenol shown in the table below?

Compound	CH ₃ CH ₂ CH ₂ OH	CH ₃ CH ₂ CH ₂ SH	CH ₃ CH ₂ CH ₂ SeH
Boiling point (° C)	97.2	67.8	147.0

With reference to intermolecular forces, explain briefly why the boiling points increase in the order $CH_3CH_2CH_2SH < CH_3CH_2CH_2OH < CH_3CH_2CH_2SeH$.

Polarisability of atoms increases as the size of the atoms increase. The greater the polarisability, the stronger the dispersion forces. On this basis, the expected boiling point order would be $C_3H_7OH < C_3H_7SH < C_3H_7SeH$.

C₃H₇OH also has hydrogen bonding between the OH groups. H-bonding is a stronger intermolecular force than dispersion forces and this increases the boiling point of C₃H₇OH to be above that of C₃H₇SH. The effect is not enough to push it above the boiling point of C₃H₇SeH.