• Consider the following equation.

 $HBrO(aq) + NH_3(aq) \implies BrO^{-}(aq) + NH_4^{+}(aq)$

Name all of the species in this equation.

HBrO	hypobromous acid
BrO ⁻	hypobromite ion
NH ₃	ammonia
$\mathrm{NH_4}^+$	ammonium ion

Complete the following table by giving the correct pK_a or pK_b value where it can be calculated. Mark with a cross (\times) those cells for which insufficient data have been given to calculate a value.

Species	HBrO	NH ₃	BrO⁻	${ m NH_4}^+$
pK_a of acid	8.64	×	×	9.24
pK_b of base	×	4.76	5.36	×

Determine on which side (left or right hand side) the equilibrium for the reaction above will lie. Provide a brief rationale for your answer.

The reaction is the sum of the acid-base equilibra for HBrO and NH3:HBrO(aq) \rightarrow H⁺(aq) + BrO⁻(aq) K_a (HBrO) = 10^{-8.64}H⁺(aq) + NH3(aq) \rightarrow NH4⁺(aq) $K(NH3) = \frac{1}{K_a(NH_4^+)} = 10^{+9.24}$ HBrO(aq) + NH3(aq) \rightarrow BrO⁻(aq) $K = K_a(HBrO) \times K(NH3)$

Hence, $K = (10^{-8.64}) \times (10^{+9.24}) = 10^{+0.64} = 4.4$. As K > 1, the reaction favours products.