- Consider the following equation.

$$
\mathrm{HBrO}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{BrO}^{-}(\mathrm{aq})+\mathrm{NH}_{4}^{+}(\mathrm{aq})
$$

Name all of the species in this equation.

HBrO	hypobromous acid
BrO^{-}	hypobromite ion
NH_{3}	ammonia
$\mathrm{NH}_{4}{ }^{+}$	ammonium ion

Complete the following table by giving the correct $\mathrm{p} K_{\mathrm{a}}$ or $\mathrm{p} K_{\mathrm{b}}$ value where it can be calculated. Mark with a cross (\boldsymbol{x}) those cells for which insufficient data have been given to calculate a value.

Species	HBrO	NH_{3}	BrO^{-}	$\mathrm{NH}_{4}{ }^{+}$
$\mathrm{p} K_{\mathrm{a}}$ of acid	8.64	\boldsymbol{x}	\boldsymbol{x}	$\mathbf{9 . 2 4}$
$\mathrm{p} K_{\mathrm{b}}$ of base	\boldsymbol{x}	4.76	$\mathbf{5 . 3 6}$	\boldsymbol{x}

Determine on which side (left or right hand side) the equilibrium for the reaction above will lie. Provide a brief rationale for your answer.

The reaction is the sum of the acid-base equilibra for $\mathbf{H B r O}$ and NH_{3} :

$$
\begin{array}{ll}
\mathrm{HBrO}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{BrO}^{-}(\mathrm{aq}) & K_{\mathrm{a}}(\mathrm{HBrO})=10^{-8.64} \\
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq}) & K\left(\mathrm{NH}_{3}\right)=\frac{1}{K_{\mathrm{a}}\left(\mathrm{NH}_{4}{ }^{+}\right)}=10^{+9.24} \\
\mathrm{HBrO}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{BrO}^{-}(\mathrm{aq}) & K=K_{\mathrm{a}}(\mathbf{H B r O}) \times K\left(\mathrm{NH}_{3}\right)
\end{array}
$$

Hence, $K=\left(10^{-8.64}\right) \times\left(10^{+9.24}\right)=10^{+0.64}=4.4$. As $K>1$, the reaction favours products.

