• Complete the following table. Give, as required, the formula, the systematic name, the oxidation number of the underlined atom and, where indicated, the number of *d* electrons for the element in this oxidation state.

Marks 5

Formula	Systematic name	Oxidation number	Number of <i>d</i> electrons
<u>C</u> O ₂	carbon dioxide	+IV or +4	0
Na ₂ CrO ₄	sodium chromate	+VI or +6	0
FeCl ₃ ·3H ₂ O	iron(III) chloride-3-water (the non-IUPAC form "iron(III) chloride trihydrate" is also acceptable)	+III or +3	5
K ₂ SO ₄	potassium sulfate		

• Draw the Lewis structures, showing all valence electrons for the following species.

3

$$\begin{bmatrix} ... \\ H - C - H \\ H \end{bmatrix} \ominus \begin{bmatrix} ... \\ H - C - H \\ H \end{bmatrix} \ominus$$

$$\begin{bmatrix} H - C - H \\ H \end{bmatrix} \oplus$$

Indicate which of these species you expect will be more stable and explain why.

CH3 is more stable as it has a full octet of electrons