Reaction of nitrogen-14 with a neutron forms two products, one of which is carbon-14. Radiocarbon dating involves the carbon-14 isotope which undergoes β-decay (emission of an electron from the nucleus). Write the two nuclear equations that illustrate the formation and decay of carbon-14.

¹⁴C formation: ${}^{14}_7$ N + ${}^{1}_0$ n $\rightarrow {}^{14}_6$ C + ${}^{1}_1$ p

 ${}^{14}C$ decay: ${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e$

• Complete the following table.

Orbital	Principal quantum number, <i>n</i>	Angular momentum quantum number, <i>l</i>	Number of spherical nodes	Number of planar nodes
4 <i>s</i>	4	0	3	0
3 <i>p</i>	3	1	1	1
3 <i>d</i>	3	2	0	2

• It requires 151 kJ mol^{-1} to break the bond in I₂. What is the minimum wavelength of light needed to break this bond? Give your answer in nm.

151 kJ mol⁻¹ corresponds to:

energy per molecule = $151 \times 10^3 / 6.022 \times 10^{23} \text{ J} = 2.51 \times 10^{-19} \text{ J}$

According to Planck's relationship between the energy and wavelength, λ , of light:

 $E = hc / \lambda$

Hence

 $\lambda = hc / E$ = (6.626 × 10⁻³⁴ J s) × (2.998 × 10⁸ m s⁻¹) / (2.51 × 10⁻¹⁹ J) = 7.90 × 10⁻⁷ m = 790. nm

Answer: 790. nm

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

3

Marks

2

2