• Complete the following table.

Molecule	CO_2	SO_2
Draw a Lewis structure	;o=c=o;	;o=s=o;
Name the molecular geometry	linear	bent (approx 120°)
Does the molecule have a dipole moment? Give a reason for your answer.	No. The molecule is linear so the dipoles in the C=O bonds cancel each other out.	Yes. The molecule is bent so the dipoles in the S=O bonds do not cancel each other out.
Give the hybridisation of the central atom.	sp	sp ²

Comment on the relative strength of a π -bond in carbon dioxide compared to a π -bond in sulfur dioxide.

The π -bond is stronger in CO₂ because the overlapping orbitals (2p in C and 2p in O) are of similar size allowing maximum overlap. In SO₂, the 3p orbital in S is bigger than the 2p orbital in O so the overlap is not as good.

Both oxides dissolve in water to give a weak acid. Choose one of the oxides and write balanced equations representing the formation of the corresponding weak acid and the dissociation of the acid into ions.

$$SO_2(g) + H_2O(l) \rightarrow H_2SO_3(aq) \rightarrow H^+(aq) + HSO_3^-(aq)$$

$$CO_2(g) \ + \ H_2O(l) \ \rightarrow \ H_2CO_3(aq) \ \rightarrow \ H^+(aq) \ + \ HCO_3^-(aq)$$

Use one of the molecules/ions from the above equations to illustrate the concept of resonance.

$$\begin{bmatrix} \vdots \vdots \\ H-O-C \\ \vdots \vdots \\ \vdots \\ H-O-C \\ \vdots \end{bmatrix}$$

Marks 12