- Cyclopentadiene reacts with sodium hydroxide. Predict the structure of the product and explain its relative stability.

The product is the cyclopentadienyl anion.
This is an aromatic ring as it:
(i) flat
(ii) has 6π electrons ($2 \mathrm{C}=\mathrm{C}$ bonds and a lone pair on the C^{-}atom) so satisfies
Hückel's $4 n+2$ rule with $n=1$

(iii) all C atoms are sp^{2} hybridized.
(iv)

The negative charge is delocalized around the ring as shown in the resonance forms below:

- Complete the following table.

Marks

STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	
	1. Mg / dry ether 2. CO_{2} 3. $\mathrm{H}^{\oplus} / \mathrm{H}_{2} \mathrm{O}$	
SH	$\mathrm{I}_{2} /$ air	
	(i) NaOH (ii) $\mathbf{C H}_{3} \mathbf{C H}_{2} \mathrm{Br}$	
	conc. HNO_{3} / conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$	
	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{\text {e }} / \mathrm{H}^{\oplus}$	

- Show clearly the reagents you would use to carry out the following chemical conversions. Draw constitutional formulas for any intermediate compounds. Note: More than one step is required in both cases.

- Complete the following table.

STARTING MATERIAL	REAGENTS/CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)

- Complete the following table. Make sure you give the name of the product or starting material where requested.

STARTING MATERIAL	REAGENTS/CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
	$\mathbf{H N O}_{\mathbf{3}} / \mathbf{H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}$ $\left(\mathbf{3 0 - 4 0}{ }^{\circ} \mathbf{C}\right)$	

