- 2
- Desferal is a siderophore-based drug that is used in humans to treat iron-overload. One molecule of Desferal (molecular formula: $C_{25}H_{48}O_8N_6$) can bind one Fe³⁺ ion. A patient with an iron-overload disease had an excess of 5.34×10^{-4} M Fe³⁺ in her bloodstream. Assuming the patient had a total blood volume of 4.84 L, what mass of Desferal would be required to complex all of the excess Fe³⁺?

As one mole of Deferal will complex one mole of Fe³⁺, the number of moles of Desferal required is:

number of moles = concentration × volume = $(5.34 \times 10^{-4}) \times 4.84 = 2.58 \times 10^{-3}$ M

The molar mass of C₂₅H₄₈O₈N₆ is:

 $(25 \times 12.01 \text{ (C)}) + (48 \times 1.008 \text{ (H)}) + (8 \times 16.00 \text{ (O)}) + (6 \times 14.01 \text{ (N)}) = 560.694$

Hence, the mass required is:

mass = number of moles \times molar mass = $(2.58 \times 10^{-3}) \times (560.694) = 1.45$ g

Answer: **1.45 g**

• Many gases are available for use in compressed gas cylinders, in which they are stored at high pressures. Calculate the mass of oxygen gas that can be stored at 20 °C and 170 atm pressure in a cylinder with a volume of 60.0 L.

Using the ideal gas law, PV = nRT, the number of moles that can be stored is:

$$\mathbf{n} = \frac{\mathbf{PV}}{\mathbf{RT}} = \frac{(170) \times (60.0)}{(0.08206) \times (20 + 273)} = 424 \, \text{mol}$$

As the molar mass of O_2 is $(2 \times 16.00) = 32.00$, this corresponds to a mass of:

mass = number of moles \times molar mass = 424 \times 32.00 = 13600 g = 13.6 kg

Answer: 13.6 kg

Marks • If 20.0 mL of a 0.100 M solution of sodium phosphate is mixed with 25.0 mL of a 6 0.200 M solution of zinc chloride, what mass of zinc phosphate will precipitate from the reaction? 25.0 mL of a 0.200 M solution of ZnCl₂ contains: $n(Zn^{2+}(aq)) = concentration \times volume = 0.200 \times \frac{25}{1000} = 0.00500 mol$ 20.0 mL of a 0.100 solution of Na₃PO₄ contains: $n(PO_4^{3-}) = 0.100 \times \frac{20}{1000} = 0.00200 \text{ mol}$ The ionic equation for the precipitation reaction is: $3Zn^{2+}(aq) + 2PO_4^{3-}(aq) \rightarrow Zn_3(PO_4)_2(s)$ As $n(Zn^{2+}(aq) > \frac{3}{2} \times n(PO_4^{3-}(aq)), PO_4^{3-}$ which is the limiting reagent. The maximum amount of product depends on $n(PO_4^{3-})$. The amount of zinc phosphate formed is: $n(Zn_3(PO_4)_2(s) = \frac{1}{2} \times n(PO_4^{3-}(aq)) = \frac{1}{2} \times 0.00200 = 0.00100 \text{ mol}$ The formula mass of zinc phosphate is: $(3 \times 65.39 (Zn)) + 2 \times (30.97 (P) + 4 \times 16.00 (O)) = 386.11$ The mass of this amount of zinc phosphate is therefore: mass = number of moles \times formula mass = 0.00100 \times 386.11 = 0.386 g

Answer: **0.386 g**

ANSWER CONTINUES ON THE NEXT PAGE

What is the final concentration of zinc ions in solution after the above reaction?

The number of moles of $Zn^{2+}(aq)$ removed by precipitation = $3 \times 0.00100 = 0.00300$ mol. The amount remaining is therefore:

 $n(Zn^{2+}(aq)) = 0.00500 - 0.00300 = 0.00200 mol$

The total volume of the solution after mixing is (20.0 + 25.0) = 45.0 mL so the concentration is:

 $[Zn^{2+}(aq)] = \frac{number of moles}{volume} = \frac{0.00200}{(45/1000)} = 0.0444 \, M$

Answer: **0.0444 M**

What is the final concentration of sodium ions in solution after the above reaction?

20.0 mL of a 0.100 solution of Na₃PO₄ contains:

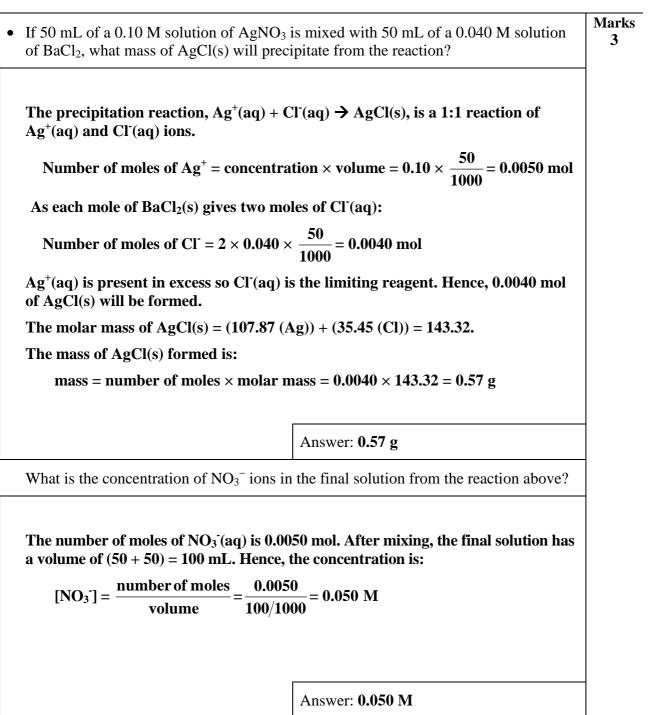
 $n(Na^+) = 3 \times 0.100 \times \frac{20}{1000} = 0.00600 \text{ mol}$

After mixing, this amount is contained in a volume of 45.0 mL so the concentration is:

 $[Na^{+}(aq)] = \frac{number of moles}{volume} = \frac{0.00600}{(45/1000)} = 0.133 \,M$

Answer: 0.133 M

- 3
- Human haemoglobin has a molar weight of 6.45×10^4 g mol⁻¹ and contains 3.46 g of iron per kg. Calculate the number of iron atoms in each molecule of haemoglobin.


A mole of haemoglobin has a mass of 6.45×10^4 g = 64.5 kg. As each kilogram contains 3.45 g of iron, a mole contains (64.5×3.45) = 223 g of iron.

The atomic mass of iron is 55.85 so this mass of iron corresponds to:

number of moles of iron = $\frac{\text{mass}}{\text{atomic mass}} = \frac{223}{55.85} = 3.98$

Answer:4 iron atoms per molecule

2006-J-3

CHEM1611	2005-J-3	June 2005
	itrate (0.080 M, 60 mL) and potassist amount (in mol) of PbI ₂ (s) precipita	
Lead(II) nitrate and	potassium iodide react according	to the equation:
$Pb(NO_3)_2(aq) + 2$	$2KI(aq) \rightarrow PbI_2(s) + 2K(NO_3)(aq)$	
same concentrations smaller, it is this that	s <i>two</i> moles of KI for every <i>one</i> me of the two solutions are used but t t limits the amount of product. Th concentration (in M) × volume (in	the volume of KI is le number of moles of KI
moles of KI = 0.0	080 mol L ⁻¹ × $\frac{40}{1000}$ L = 0.0032 mo	1
	is made for every <i>two</i> moles of KI the number of moles of KI:	used, the maximum yield
moles of $PbI_2 = \frac{1}{2}$	$\frac{1}{2} \times 0.0032 \text{ mol} = 0.0016 \text{ mol}$	
	Answer: 0.001	6 mol
What is the final conc reaction?	entration of $K^+(aq)$ ions remaining i	n solution after the
	of K ⁺ is 0.0032 mol. After mixing, L. The concentration is:	the total volume = (60 + 40
concentration = r	number of moles / volume = (0.0032	2 mol) / (0.1 L) = 0.032 M
	Answer: 0.032	M

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Sume 2004Sume 2004Given that haemoglobin contains 4 Fe atoms per molecule and its concentration in
blood is 15 g per 100 mL, calculate the total mass of Fe in the patient's blood before
being treated with Desferal. (The molar mass of haemoglobin is 6.45×10^4 g mol⁻¹.)Marks 4In 5.04 L, the total mass of haemoglobin is $15 \times (5.04 \times 10^3 / 100) = 756$ g. If the
molar mass is 6.45×10^4 g mol⁻¹, this corresponds toMarks
amoles of haemoglobin = mass / molar mass
= $(756 \text{ g})/(6.45 \times 10^4 \text{ g mol}^{-1}) = 0.0117$ molAs haemoglobin contains 4 Fe atoms, the number of moles of Fe is 4×0.0117
mol = 0.0469 mol. There is also 3.2105 mol of free Fe³⁺ present (from 2004-J-3)
so the total number of moles of Fe is $(0.0469 + (3.2105 \times 10^{-3}))$ mol = 0.050 mol.The mass of Fe is given by moles \times atomic mass:

mass of Fe = $(0.050 \text{ mol}) \times (55.85 \text{ g mol}^{-1}) = 2.80 \text{ g}$

ANSWER: 2.80 g

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Marks 5

• Some micro-organisms thrive under warm, acidic conditions where sulfuric acid is produced as a metabolic by-product from the reaction between sulfur (S), water and oxygen (O_2) . Write a balanced equation for this reaction.

 $2S(s) + 3O_2(g) + 2H_2O(l) \rightarrow 2H_2SO_4(l)$

Calculate the volume of oxygen that is required to react to completion with 0.0655 g of sulfur at 1.00 atm and 55 °C.

The number of moles of sulfur in 0.0655 g is: number of moles = $\frac{\text{mass}(\text{ing})}{\text{molar mass}(\text{ing mol}^{-1})} = \frac{0.0655}{32.07} = 0.002042 \text{ mol}$ Three moles of O₂ are required for every two moles of S. Hence the number of moles of O₂ required is: number of moles = $\frac{3}{2} \times 0.002042 = 0.003064$ mol The volume of this number of moles of gas at 1.00 atm and 55 °C (= 328 K) is given by the ideal gas law, pV = nRT, so, $V = \frac{nRT}{p} = \frac{(0.003064) \times 0.08206 \times 328}{1.00} = 0.0825 L$ (Note the use of R = 0.08206 L atm $K^{-1} \text{ mol}^{-1}$ as pressure is given in atmospheres provides the answer in litres)

ANSWER: 0.0825 L

Calculate the pH of the final solution if the reaction is carried out in 20.0 L of water. Assume that the sulfuric acid fully dissociates.

Two moles of H₂SO₄ is produced from every *two* moles of S. Therefore, the number of moles of H_2SO_4 is just 0.002042 mol. Every mole of H_2SO_4 produces *two* moles of H^+ . Therefore, the number of moles of H^+ is

number of moles = $2 \times 0.002042 = 0.004084$ mol

As the reaction is carried out in 20.0 L of water, the concentration of H^+ is:

concentration = $\frac{\text{number of moles}(\text{in mol})}{\text{volume}(\text{in L})} = \frac{0.004084}{20} = 0.0002042 \text{ M}$ volume (in L) 20

From the definition of pH:

 $pH = pH = -log_{10}[H^+] = -log_{10}(0.0002042) = 3.69$

ANSWER: 3.69

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY