•	Complete the	following table.
---	--------------	------------------

Complete the following table.			
Molecule	CO_2	SO_2	
Draw a Lewis structure	io=c=o:	io=s=o:	
Name the molecular geometry	linear	bent (approx 120°)	
Does the molecule have a dipole moment? Give a reason for your answer.	No. The molecule is linear so the dipoles in the C=O bonds cancel each other out.	Yes. The molecule is bent so the dipoles in the S=O bonds do not cancel each other out.	
Give the hybridisation of the central atom.	sp	sp ²	

Comment on the relative strength of a π -bond in carbon dioxide compared to a π -bond in sulfur dioxide.

The π -bond is stronger in CO₂ because the overlapping orbitals (2p in C and 2p in O) are of similar size allowing maximum overlap. In SO₂, the 3p orbital in S is bigger than the 2p orbital in O so the overlap is not as good.

Both oxides dissolve in water to give a weak acid. Choose one of the oxides and write balanced equations representing the formation of the corresponding weak acid and the dissociation of the acid into ions.

 $SO_2(g) + H_2O(l) \rightarrow H_2SO_3(aq) \rightarrow H^+(aq) + HSO_3^-(aq)$

$$CO_2(g) + H_2O(l) \rightarrow H_2CO_3(aq) \rightarrow H^+(aq) + HCO_3^-(aq)$$

Use one of the molecules/ions from the above equations to illustrate the concept of resonance.

$$\left[\begin{array}{cccc} & & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

• Draw the Lewis structure of the acetate ion (CH₃COO⁻) showing all appropriate resonance structures.

Marks 10

Indicate the hybridisation, molecular geometry and approximate bond angle about each of the carbon atoms in the acetate ion.

	-CH ₃	-COO ⁻
Hybridisation of C	sp ³	sp ²
Molecular geometry about C	tetrahedral	trigonal planar
Approximate bond angles about C	109°	120°

The actual structure of the acetate ion is a weighted combination of all resonance structures. Sketch the σ -bond framework of the acetate ion and indicate the *p*-orbitals that are involved in the π -bonding of the acetate ion.

CHEM1611	2012-J-4		June 2012	
 Complete the following table, include resonance structures if appropriate. The centra atom is underlined. 			ppropriate. The central	Marks 7
Formula	<u>P</u> Cl ₅	$\underline{S}OCl_2$	H <u>C</u> OO [−]	
Lewis structure	: CI: CI: CI: CI: CI: CI: CI: CI: CI: CI	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		
Arrangement of electron pairs around the underlined atom	trigonal bipyramidal	tetrahedral	trigonal planar	
Molecular geometry	trigonal bipyramidal	trigonal pyramidal	trigonal planar	
Intermolecular forces present	dispersion	dispersion and dipole-dipole		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

•

Provide the requested information for each of the indicated sites on adrenaline.

Atom	Geometric arrangement of the electron pairs around the atom	Hybridisatio n of the atom	Geometry around the atom	Approximate angles around the atom
^{#1} O	tetrahedral	sp ³	bent	109°
^{#2} N	tetrahedral	sp ³	trigonal pyramidal	109°
#3C	trigonal planar	sp ²	trigonal planar	120°

Marks • The molecular structure of nicotine, the addictive component of tobacco, is shown 4 below. Η Β List the types of intermolecular interactions that each of the following sites on nicotine would be involved in when it is dissolved in water. A – H bonding and dipole-dipole interactions **B** – dispersion forces and dipole-induced dipole Provide the requested information for each of the indicated atoms in nicotine. Geometric arrangement of the Hybridisation Geometry around the atom Atom electron pairs around the atom of the atom sp^2 N-1 trigonal planar bent (~120°) sp^3 N-2 tetrahedral trigonal pyramidal sp^3 C-3 tetrahedral tetrahedral sp^2 C-4 trigonal planar trigonal planar

• Tranexamic acid, *trans*-(4-aminomethyl)cyclohexanecarboxylic acid, is used for the treatment of severe haemorrhage in patients with haemophilia. O O O O C HO C C H2 Marks 4 Marks 4 Marks 4 N A C H2 N H2 Provide the requested information for each of the indicated atoms in tranexamic acid. Atom Geometric arrangement of the Hybridisation Geometry/shape of σ -bonding

Atom	Geometric arrangement of the electron pairs around the atom	Hybridisation of the atom	Geometry/shape of σ -bonding electron pairs around the atom
C-1	trigonal planar	sp ²	trigonal planar
C-2	tetrahedral	sp ³	tetrahedral
O-3	tetrahedral	sp ³	bent
N-4	tetrahedral	sp ³	trigonal pyramidal

• Complete the following table. Give, as required, the formula, the systematic name, the oxidation number of the underlined atom and, where indicated, the number of *d* electrons for the element in this oxidation state.

FORMULA	SYSTEMATIC NAME	OXIDATION NUMBER	NUMBER OF <i>d</i>
		NOMBER	LEECIROINS
<u>S</u> O ₃	sulphur trioxide	+VI	0
K <u>Mn</u> O ₄	potassium permanganate	+VII	0
<u>Co</u> Cl₂·6H₂O	cobalt(II) chloride hexahydrate	+II	7
(NH ₄) ₂ SO ₄	ammonium sulfate		

• Draw the Lewis structures, showing all valence electrons for the following species. Indicate which of the species have contributing resonance structures.

• A sample of carboxypeptidase (an enzyme) was purified and found on analysis to contain 0.191% by weight of zinc. What is the *minimum* molecular weight of the enzyme if we assume it is a monomer?

The enzyme must contain at least one zinc atom. If it contains one zinc atom, its contribution to the molar mass is 65.39 amu. If this is 0.191% of the total mass, the molar mass corresponding to 100% is:

0.191 % of molar mass = 65.39

100% of molar mass = $65.39 / 0.00191 = 34240 \text{ g mol}^{-1}$

Answer: **34240 g mol**⁻¹ or **34.24 kg mol**⁻¹

4

Marks

5

Marks • Shown here are the classical and the zwitterionic forms of the amino acid leucine. 2 **C** H₂N-CH-² ¹CH₂ CH₃-CH CH₃-CH ³OH ⊕ H₃N--CH-| | CH₂ ∭ 0 CH₃-ĊH B CH₃ List the types of intermolecular interactions in which each of the indicated sites (A, B and **C**) in leucine could be involved. Α ion-ion, ion-dipole, ion-induced dipole В dispersion С hydrogen bonding, dipole-dipole, dipole-induced dipole Geometric arrangement of the Hybridisation Geometry/shape of σ -bonding Atom electron pairs around the atom of the atom electron pairs around the atom sp^3 ¹C tetrahedral tetrahedral **2**C sp^2 trigonal planar trigonal planar **3**O sp^3 tetrahedral bent

Ι

• Siderophores (from the Greek meaning 'iron carriers') are organic molecules produced by microorganisms to provide essential Fe³⁺ required for growth. The functional group (the group which binds Fe³⁺) of siderophores is shown below as tautomers I and II. Complete the table below, relating to the molecular geometry about the specified atoms in I and II.

Atom	Geometric arrangement of the electron pairs around the atom	Hybridisation of atom	Geometry of bonding electron pairs around atom
¹ C	tetrahedral	sp ³	tetrahedral
² N	tetrahedral	sp ³	trigonal pyramidal
³ C	trigonal planar	sp ²	trigonal planar
⁴ O	tetrahedral	sp ³	bent
⁵ N	trigonal planar	sp ²	bent

Desferal is a siderophore-based drug that is used in humans to treat iron-overload. One molecule of Desferal (molecular formula: $C_{25}H_{48}O_8N_6$) can bind one Fe³⁺ ion. A patient with iron-overload had an excess of 0.637 mM Fe³⁺ in his bloodstream. Assuming the patient has a total blood volume of 5.04 L, what mass of Desferal would be required to complex all of the excess Fe³⁺?

In 5.04 L, the number of moles of Fe^{3+} is given by the concentration × volume:

moles of $Fe^{3+} = (0.637 \times 10^{-3} \text{ mol } L^1) \times (5.04 \text{ L}) = 3.2105 \times 10^{-3} \text{ mol}$

As each desferal molecule binds one Fe³⁺, this is also the number of moles of desferal that is required. The molar mass of desferal is:

molar mass = $(25 \times 12.01 \text{ (C)} + 48 \times 1.008 \text{ (H)} + 8 \times 16.00 \text{ (O)} + 6 \times 14.01 \text{ (N)}) \text{ g mol}^{-1}$ = 560.964 g mol⁻¹

The mass of desferal required is then the number of moles × molar mass:

mass of desferal = $(3.2105 \times 10^{-3} \text{ mol}) \times (560.964 \text{ g mol}^{-1}) = 1.80 \text{ g}$

ANSWER: 1.80 g

THIS QUESTION CONTINUES ON THE NEXT PAGE

Marks 7

Marks

6

• The structures of dopamine and mescaline are given below.

Dopamine is involved in the transmission of nerve impulses in the brain. Complete the Lewis structure for dopamine by including all lone pair electrons.

How many π electrons are there in dopamine?

1 lone pair on each O and the π electrons in the 3 C=C bonds are involved in π bonding: 10 e⁻ in total

Predict the bond angles at the points labelled *a*, *b*, and *c* in dopamine.

а	~109.5°
b	~120°
с	~109.5

Mescaline is an hallucinogenic compound found in the peyote cactus. Suggest a reason for the ability mescaline to disrupt nerve impulses.

Mescaline has a similar structure to dopamine, with a benzene ring and a amine group plus O groups on the ring. It can bind to the receptors designed for dopamine.

Which compound, dopamine or mescaline, has the higher solubility in water? Give reasons for your answer.

The O-H groups in dopamine are able to form H-bonds with water molecules making it quite soluble. In mescaline, these are ethers groups which will form much weaker H-bonds and so mescaline has a lower solubility.