2

	ate the heat input required (in J) for the conversion of 9.0 g of water from ice at to steam at 373 K.	
Data:	$C_{\rm p} {\rm H_2O(l)} = 75 {\rm J} {\rm K}^{-1} {\rm mol}^{-1}$	
	$\Delta H_{\rm vap} \mathrm{H_2O}(\mathrm{l}) = 41 \mathrm{kJ} \mathrm{mol}^{-1} \qquad \Delta H_{\rm fus} \mathrm{H_2O}(\mathrm{s}) = 6.0 \mathrm{kJ} \mathrm{mol}^{-1}$	
The n	nolar mass of water is (2 × 1.008 (H)) + 16.00 (O) = 18.016 g mol ⁻¹	
There	Therefore, 9.0 g corresponds to:	
:	number of moles = $\frac{\text{mass}(g)}{\text{molar mass}(g \text{mol}^{-1})} = \frac{9.0 \text{ g}}{18.016 \text{ g mol}^{-1}} = 0.50 \text{ mol}$	
The h	eat required can be broken down into 3 contributions.	
(i)	Heat required to melt ice (q_1)	
	6.0 kJ is required to melt 1 mole so:	
	$q_1 = (0.50 \text{ mol}) \times (6.0 \text{ kJ}) = 3.0 \text{ kJ} = 3.0 \times 10^3 \text{ kJ} = 3000 \text{ J}$	
(ii)	Heat required to warm water from 273 K to 373 K (q_2):	
	Using $q = n \times C_p \times \Delta T$,	
	$q_2 = (0.50 \text{ mol}) \times (75 \text{ J K}^{-1} \text{ mol}^{-1}) \times (373 - 273 \text{ K}) = 3700 \text{ J}$	
(iii)	Heat required to vaporise water (q_3) :	
	41 kJ is required to vapourize 1 mole so:	
	$q_1 = (0.50 \text{ mol}) \times 41 \text{ (kJ mol}^{-1}) = 20 \text{ kJ} = 20 \times 10^3 \text{ kJ} = 20000 \text{ J}$	
The t	otal heat required is therefore:	
	$q_{\text{total}} = q_1 + q_2 + q_3 = (20000 \text{ J}) + (3700 \text{ J}) + (3000 \text{ J}) = 27000 \text{ J}$	

As the question gives the mass and heats of fusion and vaporization to 2 significant figures, the answer is also quoted to this level of accuracy.