

• Acetic acid (100 mL, 0.20 M) is mixed with solid sodium hydroxide (0.010 mol). Calculate the final pH of the solution. pK_a of acetic acid = 4.76

3

Assuming that the addition of solid sodium hydroxide causes no volume change, the initial [OH⁻(aq)] is:

concentration = $\frac{\text{number of moles}}{\text{volume}} = \frac{0.010 \text{ mol}}{(100/1000) \text{ L}} = 0.10 \text{ M}$

Acetic acid and sodium hydroxide react together in a 1:1 ratio:

	СН ₃ СООН	OH-	-	CH ₃ COO ⁻	H ₂ O
initial	0.20	0.10		0	large
final	(0.20 - 0.10) = 0.10	0		0.10	large

The solution contains an acid and its conjugate base so the Henderson-Hasselbalch equation can be used:

$$pH = pK_a + \log_{10}\left(\frac{[base]}{[acid]}\right) = 4.76 + \log_{10}\left(\frac{[CH_3COO^-]}{[CH_3COOH]}\right)$$

As [acid] = [base], $\log_{10}\left(\frac{[base]}{[acid]}\right) = \log_{10}(1) = 0$ and so

$$pH = pK_a = 4.76$$

pH = **4.76**