•	Consider the results	of the following set of experiments studying the rate of the
	chemical reaction:	$2A + B \rightarrow 3C + D$

Experiment #	initial [A] / M	initial [B] / M	Rate / M hr ⁻¹
1	0.240	0.120	2.00
2	0.120	0.120	0.500
3	0.240	0.060	1.00

Write the rate law expression.

Between experiment 1 and 2, [B] is kept constant. [A] is halved which causes the rate to be reduced by a factor of four. The rate is second order with respect to [A].

Between experiment 1 and 3, [A] is kept constant. [B] is halved which causes the rate to halve. The rate is first order with respect to [B]. Thus,

rate $\alpha [A]^{2}[B] = k[A]^{2}[B]$

Rate = $k[\mathbf{A}]^2[\mathbf{B}]$

Calculate the rate constant, *k*, with units.

Using experiment 1 and rate = $k[A]^2[B]$:

 $(2.00 \text{ M hr}^{-1}) = k \times (0.240 \text{ M})^2 \times (0.120 \text{ M})$ so $k = 289 \text{ M}^{-2} \text{ hr}^{-1}$

 $(M hr^{-1}) = (units of k) \times (M)^2 \times (M)$ so the units of k are $M^{-2} hr^{-1}$

$$k = 289 \text{ M}^{-2} \text{ hr}^{-1}$$

What is the rate of the reaction when [A] is 0.0140 M and [B] is 1.35 M?

Using rate = $(289 \text{ M}^{-2} \text{ hr}^{-1})[\text{A}]^{2}[\text{B}]$, the rate is: rate = $(289 \text{ M}^{-2} \text{ hr}^{-1}) \times (0.0140 \text{ M})^{2} \times (1.35 \text{ M})$ = 0.0766 M hr⁻¹ = 7.66 × 10⁻³ M hr¹ Rate = 7.66 × 10⁻³ M hr⁻¹ Marks 4