3

• Ethylene glycol antifreeze, C₂H₆O₂, (1.00 kg) is added to a car radiator that contains 5.00 kg of water. What is the freezing point of the solution obtained? Data: The molal freezing point depression constant for water $K_{\rm f} = 1.86$ °C kg mol⁻¹.

The molar mass of ethylene glycol is $((2 \times 12.01 \text{ (C)}) + (6 \times 1.008 \text{ (H)}) + (2 \times 16.00 \text{ (O)}))$ g mol⁻¹) = 62.068 g mol⁻¹. The number of moles in 1.00 kg is therefore:

number of moles = $\frac{\text{mass}}{\text{molar mass}} = \frac{1.00 \times 10^3 \text{ g}}{62.068 \text{ g mol}^{-1}} = 16.1 \text{ mol}$

The molality is:

molality = $\frac{\text{number of moles of solute(mol)}}{\text{mass of solvent(kg)}} = \frac{16.1 \text{ mol}}{5.00 \text{ kg}} = 3.22 \text{ mol kg}^{-1}$

The freezing point depression, $\Delta T_{\rm f}$, is given by:

 $\Delta T_{\rm f} = K_{\rm f} m$

where $K_{\rm f}$ is the molal freezing point depression constant. Hence,

 $\Delta T_{\rm f} = K_{\rm f}m = (1.86 \ ^{\circ}{\rm C \ kg \ mol^{-1}}) \times (3.22 \ {\rm mol \ kg^{-1}}) = 5.99 \ ^{\circ}{\rm C}$

At atmospheric pressure, the water freezes at 0 °C. The solution will freeze at -5.99 °C.