• Uric acid, $C_5H_5N_4O_3$, is a weak diprotic acid with a low solubility of 70 mg L⁻¹. The extremely painful inflammation known as gout occurs when crystals of uric acid are deposited in the joints. Given that the pH of a saturated solution of uric acid is 4.58, calculate the p K_{a1} of uric acid at 25 °C? As pH = $-\log_{10}([H_3O^+(aq)])$ 4.58, $[H_3O^+(aq)] = 10^{4.58} = 2.63 \times 10^{-5}$ M. The molar mass of uric acid is: $((5 \times 12.01 \text{ (C)}) + (5 \times 1.008 \text{ (H)}) + (4 \times 14.01 \text{ (N)}) + (3 \times 16.00 \text{ (O)}) \text{ g mol}^{-1}$ $= 169.13 \text{ g mol}^{-1}$ A one litre solution contains 70 mg corresponding to number of moles = $\frac{(70 \times 10^{-3} \text{ g})}{(169.13 \text{ g mol}^{-1})} = 4.1 \times 10^{-4} \text{ mol}.$ For this weak acid, the reaction table is: C₅H₅N₄O₃ H_2O H_3O^+ $C_5H_4N_4O_3^-$ 4.1×10⁻⁴ initial 0 0 large $(4.1 \times 10^{-4}) - (2.63 \times 10^{-5})$ 2.63×10^{-5} 2.63×10^{-5} final large The equilibrium constant K_{a1} is given by: $K_{a1} = \frac{[H_3O^+(aq)][C_5H_4N_4O_3^-(aq)]}{[C_5H_5N_4O_3(aq)]} = \frac{(2.63 \times 10^{-5}) \times (2.63 \times 10^{-5})}{(3.9 \times 10^{-4})} = 1.8 \times 10^{-6}$ Hence, $pK_{a1} = -\log_{10}K_{a1} = -\log_{10}(1.8 \times 10^{-6}) = 5.7$ Answer: $pK_{a1} = 5.7$ The monosodium salt of uric acid is slightly more soluble, 8×10^{-4} g mL⁻¹. Calculate the solubility product constant, K_{sp} , of sodium urate at 25 °C. Assume no hydrolysis of the urate ion occurs. The formula mass of the monosodium salt, $NaC_5H_4N_4O_3$ is 22.99 (Na) + (5×12.01 (C)) + $(4 \times 1.008$ (H)) + $(4 \times 14.01$ (N)) + $(3 \times 16.00$ (O)) = 191.112. The molar solubility is: molar solubility = $\frac{\text{solubility}}{\text{formula mass}} = \frac{(8 \times 10^{-4} \text{ g mL}^{-1})}{(191.112 \text{ g mol}^{-1})}$ $= 4 \times 10^{-6} \text{ mol mL}^{-1} = 4 \times 10^{-3} \text{ M}$ Hence, $K_{sp} = [Na^+(aq)][C_5H_4N_4O_3^-(aq)] = (4 \times 10^{-3}) \times (4 \times 10^{-3}) = 2 \times 10^{-5}$ Answer: $K_{sp} = 2 \times 10^{-5}$

Suggest a possible reason why the pH of blood plasma remains near 7.4 even when saturated with uric acid.

Blood is buffered by a CO_3^{2-} / HCO_3^{-} buffering system which resists changes in pH.