$$2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$$

Experiment #	[NO] / M	$[H_2]/M$	Initial Rate / M s ⁻¹
1	5.0×10^{-3}	2.0×10^{-3}	1.3×10^{-5}
2	1.0×10^{-2}	2.0×10^{-3}	5.2×10^{-5}
3	1.0×10^{-2}	4.0×10^{-3}	1.0×10^{-4}

***		1	
Write	the rate	law e	xpression.

Rate =

Calculate the rate constant, k. Include units in your answer.

k =

What is the rate of the reaction when [NO] is 1.2×10^{-2} M and [H₂] is 6.0×10^{-3} M?

Rate =

2

• What is the value of the equilibrium constant for the following reaction at 298 K?

$$2Fe^{3+}(aq) + Sn(s)$$
 \longrightarrow $Sn^{2+}(aq) + 2Fe^{2+}(aq)$

The reduction half cell reactions and E⁰ values are:

Fe³⁺(aq) + e⁻
$$\rightarrow$$
 Fe²⁺(aq) $E^0 = +0.77 \text{ V}$
Sn²⁺(aq) + 2e⁻ \rightarrow Sn(s) $E^0 = -0.14 \text{ V}$

In the reaction, Sn is being oxidized and so the overall cell potential is:

$$E^0 = (+0.77) - (-0.14) = +0.91 V$$

The reaction involves 2 electrons so, using $E^0 = \frac{RT}{nF} lnK$:

$$lnK = E^{0} \times \frac{nF}{RT} = (+0.91) \times \left(\frac{2 \times 96485}{8.314 \times 298}\right) = 70.9$$

$$K = e^{70.9} = 6.05 \times 10^{30}$$

Answer: 6.05×10^{30}