Marks • A mixture of 0.500 mol of NO₂(g) and 0.500 mol of N₂O₄(g) is allowed to reach 5 equilibrium in a 10.0 L vessel maintained at 298 K. The equilibrium is described by the equation below. $\Delta H^{\circ} = -15 \text{ kJ mol}^{-1}$ for the forward reaction. $2NO_2(g) \iff N_2O_4(g)$ $K_{\rm c} = 1.2 \times 10^2 \,{\rm M}^{-1}$ Show that the system is at equilibrium when the concentration of $NO_2(g)$ is 0.023 M. Discuss the effect an increase in temperature, at constant volume, would have on the concentration of $NO_2(g)$. State with a brief reason whether the concentration of $NO_2(g)$ is increased, decreased, or unchanged when argon gas (0.2 mol) is injected while the temperature and volume remain constant.