• Consider the following reaction at 298 K.

$$Ni^{2+}(aq) + Zn(s) \implies Ni(s) + Zn^{2+}(aq)$$

Calculate ΔG° for the cell. (Relevant electrode potentials can be found on the data page.)

The half-cell reduction reactions and potentials are:

Ni²⁺(aq) + 2e⁻ \rightarrow Ni(s) $E^0 = -0.24 V$ Zn²⁺(aq) + 2e⁻ \rightarrow Zn(s) $E^0 = -0.76 V$

In the reaction above, the Zn is undergoing oxidation so its potential is reversed and the overall cell potential is:

$$E_{cell}^0 = (-0.24) - (-0.76) = +0.52 V$$

Using $\Delta G^0 = -nFE^0$ for this two electron reaction:

$$\Delta G^0 = -(2) \times (96485) \times (+0.52) = -100000 \text{ J mol}^1 = -100 \text{ kJ mol}^1$$

Answer: -100 kJ mol⁻¹

What is the value of the equilibrium constant for the reaction at 298 K?

Using
$$E^0 = \frac{RT}{nF} \ln K$$
,
+0.52 = $\frac{(8.314) \times (298)}{(2) \times (96485)} \ln K$ so $K = 3.89 \times 10^{17}$

Alternatively, using $\Delta G^0 = -RT \ln K$,

$$-100 \times 10^3 = -(8.314) \times (298) \times \ln K$$
 so $K = 3.89 \times 10^{17}$

Answer: 3.89 × 10¹⁷

Express the overall reaction in voltaic cell notation.

In the reaction, Zn is being oxidized and hence is the anode. Ni^{2+} is being reduced and so Ni is the cathode. In the standard cell notation, the anode is written on the left and the cathode on the right:

 $Zn(s) | Zn^{2+}(aq) || Ni^{2+}(aq) | Ni(s)$

ANSWER CONTINUES ON THE NEXT PAGE

Marks 5

- 2
- Using a current of 2.00 A, how long (in minutes) will it take to plate out all of the silver from 0.250 L of a 1.14×10^{-2} M Ag⁺(aq) solution?

The number of moles of $Ag^+(aq)$ in a 0.250 L of a 1.14×10^{-2} M solution is,

number of moles = volume×concentration = $0.250 \times 1.14 \times 10^{-2} = 2.85 \times 10^{-3}$ mol

The reduction of $Ag^+(aq)$ is a one electron process, $Ag^+(aq) + e^- \rightarrow Ag(s)$, so this number of moles of electrons are required.

As the number of moles of electrons delivered by a current I in a time t is,

number of moles of electrons = $\frac{\text{It}}{\text{F}} = \frac{2.00 \times \text{t}}{96485} = 2.85 \times 10^{-3}$

t = 137 s = 2.29 minutes