Marks • The final step in the industrial production of urea, $(NH_2)_2CO$, is: 6 $CO_2(g) + 2NH_3(g) \rightarrow H_2O(g) + (NH_2)_2CO(s)$ $\Delta H^{\circ} = -90.1 \text{ kJ mol}^{-1}$ Using the following data, calculate the standard enthalpy of formation of solid urea. $\Delta H^{\circ} = -1267.2 \text{ kJ mol}^{-1}$ $4NH_3(g) + 3O_2(g) \rightarrow 6H_2O(g) + 2N_2(g)$ $\Delta H^{\circ} = -393.5 \text{ kJ mol}^{-1}$ $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Lambda H^{\circ} = -483.6 \text{ kJ mol}^{-1}$ $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$ Using $\Delta_{rvn} H^0 = \sum m \Delta_f H^0$ (products) $-\sum n \Delta_f H^0$ (reactants) for the reaction, $4NH_3(g) + 3O_2(g) \rightarrow 6H_2O(g) + 2N_2(g)$ $\Delta_{rvn}H^{0} = [6\Delta_{f}H^{0}(H_{2}O(g))] - [4\Delta_{f}H^{0}(NH_{3}(g))]$ as $\Delta_f H^0(N_2(g))$ and $\Delta_f H^0(O_2(g))$ are both zero for elements in the standard states. Using $\Delta_{rxn} H^0 = -1267.2 \text{ kJ mol}^{-1}$ and $\Delta_f H^0(H_2O(g)) = 0.5 \times -483.6 \text{ kJ}$ mol⁻¹, $\Delta_{rvn} H^0 = [6 \times 0.5 \times -483.6] - [4\Delta_f H^0 (NH_3(g))] = -1267.2 \text{ kJ mol}^{-1}$ $\Delta_{f} H^{0}(NH_{3}(g)) = -45.9 \text{ kJ mol}^{-1}$ Using $\Delta_{rvn} H^0 = \sum m \Delta_f H^0$ (products) $-\sum n \Delta_f H^0$ (reactants) for the reaction, $CO_2(g) + 2NH_3(g) \rightarrow H_2O(g) + (NH_2)_2CO(s)$ $\Delta_{rxn} H^0 = [\Delta_f H^0(H_2O(g)) + \Delta_f H^0((NH_2)_2CO(g))]$ $-[\Delta_{f}H^{0}(CO_{2}(g))+2\Delta_{f}H^{0}(NH_{3}(g))]$ As $\Delta_{rvn} H^0 = -90.1 \text{ kJ mol}^{-1}$ and $\Delta_f H^0(H_2O(g))$, $\Delta_f H^0(CO_2(g))$ and $\Delta_{\rm f} {\rm H}^{\rm 0}({\rm NH}_3({\rm g}))$ are 0.5 × -483.6, -393.5 and -45.9 kJ mol⁻¹ respectively, $\Delta_{rvn} H^0 = [(0.5 \times -483.6) + \Delta_f H^0 ((NH_2)_2 CO(g))]$ $-[-393.5 + (2 \times -45.9)] = -90.1 \text{ kJ mol}^{-1}$ $\Delta_{f} H^{0}((NH_{2})_{2}CO(g)) = -333.6 \text{ kJ mol}^{-1}$ Answer: -333.6 kJ mol⁻¹ **ANSWER CONTINUES ON THE NEXT PAGE**

The formation of urea in the industrial process is only spontaneous below 821 °C. What is the value of the entropy change ΔS° (in J K⁻¹ mol⁻¹) for the reaction?

The reaction is spontaneous when $\Delta G^{\circ} < 0$. As $\Delta G^{\circ} = \Delta H^{\circ}$ - T ΔS and assuming that ΔH° and ΔS° are independent of temperature, this occurs at temperatures below T = 821 °C

 ΔH° - T $\Delta S < 0$

Using $\Delta H^\circ = -90.1 \text{ kJ mol}^{-1}$ for the industrial, at T = (821 + 273) = 1094 K,

 $(-90.1 \times 10^3) - (1094)\Delta S^\circ = 0$ so $\Delta S^\circ = -82.4 \text{ J K}^{-1} \text{ mol}^{-1}$

Answer: -82.4 J K⁻¹ mol⁻¹

Rationalise the sign of ΔS° in terms of the physical states of the reactants and products.

The reaction,

 $CO_2(g) + 2NH_3(g) \rightarrow H_2O(g) + (NH_2)_2CO(s)$

involves the conversion of 3 moles of gas \rightarrow 1 mole of gas. This corresponds to an increase in ordering which is consistent with a reduction in entropy (so $\Delta S^{\circ} < 0$).