- The specific heat capacity of water is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$ and the specific heat capacity of copper is $0.39 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$. If the same amount of energy were applied to a 1.0 mol sample of each substance, both initially at $25^{\circ} \mathrm{C}$, which substance would get hotter? Show all working.

Using $q=C \times m \times \Delta T$, the temperature change for a substance of mass m and specific heat capacity \mathbf{C} when an amount of heat equal to q is supplied is given by:

$$
\Delta T=\frac{\mathbf{q}}{\mathbf{C \times m}}
$$

The atomic mass of copper is $\mathbf{6 3 . 5 5}$. Hence, the temperature change for $\mathbf{1 . 0} \mathbf{~ m o l}$ of copper is

$$
\Delta T(\text { copper })=\frac{q}{(0.39 \times 63.55)}=\frac{q}{24.8}{ }^{\circ} \mathrm{C}
$$

The molar mass of $\mathrm{H}_{2} \mathrm{O}$ is $(2 \times 1.008(\mathrm{H}))+\mathbf{1 6 . 0 0}(\mathrm{O})=\mathbf{1 8 . 0 1 6}$. Hence, the temperature change for 1.0 mol of water is

$$
\Delta T(\text { water })=\frac{q}{(4.18 \times 18.016)}=\frac{q}{75.3}{ }^{\circ} \mathrm{C}
$$

Hence,

```
    \DeltaT (copper) > \DeltaT (water)
```

