• The K_a of benzoic acid is 6.3×10^{-5} M at 25 °C.

Calculate the pH of a 0.0100 M aqueous solution of sodium benzoate (C₆H₅COONa).

As benzoic acid is a weak acid, its conjugate base, $C_6H_5COO^-$, is a weak base and so $[OH^-]$ must be calculated using the reaction table:

	C ₆ H ₅ COO ⁻	H ₂ O	 OH ⁻	C ₆ H ₅ COOH
initial	0.0100	large	0	0
change	-X	negligible	+ x	+x
final	0.0100 – x	large	Х	X

The equilibrium constant K_b is given by:

$$K_{\rm b} = \frac{[\rm OH^-][C_6H_5COOH]}{[C_6H_5COO^-]} = \frac{x^2}{0.0100 - x}$$

For an acid and its conjugate base in aqueous solution, $K_a \times K_b = K_w = 10^{-14}$. Hence,

$$K_{\rm b} = \frac{10^{-14}}{6.3 \times 10^{-5}} = 1.6 \times 10^{-10}$$

As K_b is very small, $0.0100 - x \sim 0.0100$ and hence:

 $x^2 = 0.0100 \times (1.6 \times 10^{-10})$ or $x = 1.3 \times 10^{-6} M = [OH^{-}(aq)]$

Hence, the pOH is given by:

$$pOH = -log_{10}[OH^{-}] = -log_{10}[1.3 \times 10^{-6}] = 5.9$$

Finally, pH + pOH = 14.0 so

pH = 14.0 - 5.9 = 8.1

Answer: pH = 8.1
Answer: $\mathbf{nH} = 4.1$

ANSWER CONTINUES ON THE NEXT PAGE

Marks 5 A buffer solution is prepared by adding 375 mL of this 0.0100 M aqueous solution of sodium benzoate to 225 mL of 0.0200 M aqueous benzoic acid. Calculate the pH of the buffer solution.

375 mL of a 0.0100 of benzoate contains, moles of benzoate = volume×concentration = $0.375 \times 0.0100 = 3.75 \times 10^{-3}$ mol 225 mL of a 0.0200 of benzoic acid contains, moles of benzoic acid = $0.225 \times 0.0200 = 4.50 \times 10^{-3}$ mol The mixture has a volume of (375 + 225) = 600 mL so the concentrations of benzoate (base) and benzoic acid (acid) are: $[base] = \frac{number of moles}{volume} = \frac{3.75 \times 10^{-3}}{0.600} = 6.25 \times 10^{-3} \text{ M}$ $[acid] = \frac{4.50 \times 10^{-3}}{0.600} = 7.50 \times 10^{-3} \text{ M}$ As $pK_a = -log_{10}K_a$, $pK_a = -log_{10}(6.3 \times 10^{-5}) = 4.2$ The pH of the buffer can be calculated using the Henderson-Hasselbalch equation, $pH = pK_a + log_{10}\left(\frac{[base]}{[acid]}\right) = 4.2 + log_{10}\left(\frac{6.25 \times 10^{-3}}{7.50 \times 10^{-3}}\right) = 4.1$