CHEM1612 2006-N-6 November 2006

The CO(g) in water gas can be reacted further with $H_2O(g)$ in the so-called "watergas shift" reaction:

Marks 4

$$CO(g) + H_2O(g) \iff CO_2(g) + H_2(g)$$

At 900 K, $K_c = 1.56$ for this reaction. A sample of water gas flowing over coal at 900 K contains a 1:1 mole ratio of CO(g) and H₂(g), as well as 0.250 mol L⁻¹ H₂O(g). This sample is placed in a sealed container at 900 K and allowed to come to equilibrium, at which point it contains 0.070 mol L⁻¹ CO₂(g). What was the initial concentration of CO(g) and H₂(g) in the sample?

The reaction table is

	CO(g)	H ₂ O(g)	1	CO ₂ (g)	H ₂ (g)
initial	X	0.250		0	X
change	-0.070	-0.070		+0.070	+0.070
equilibrium	x - 0.070	0.250 - 0.070		0.070	x + 0.070

The equilibrium constant in terms of concentrations, K_c, is:

$$K_c = \frac{[CO_2(g)][H_2(g)]}{[H_2O(g)][CO(g)]} = \frac{(0.070)(x + 0.070)}{(0.180)(x - 0.070)} = 1.56$$

$$x = [CO(g)]_{initial} = [H_2(g)]_{initial} = 0.12 \text{ mol } L^{-1}$$

$$[CO] = [H_2] = 0.12 \text{ mol } L^{-1}$$

If the walls of the container are chilled to below 100 °C, what will be the effect on the concentration of $CO_2(g)$?

At temperatures below 100 °C, the water vapour will condense to form $H_2O(l)$. Following Le Chatelier's principle, the equilibrium will shift to the left as $[H_2O(g)]$ is reduced by this process and so $[CO_2(g)]$ will decrease.