• The molar solubility of lead(II) fluoride, PbF₂, is found to be 2.6×10^{-3} M at 25 °C. Calculate the value of $K_{\rm sp}$ for this compound at this temperature.

Marks 2

The solubility equilibrium and constant for PbF₂(s) are,

$$PbF_2(s) \implies Pb^{2+}(aq) + 2F(aq)$$
 $K_{sp} = [Pb^{2+}(aq)][F(aq)]^2$

As one moles of $Pb^{2+}(aq)$ and two moles of $F^{-}(aq)$ are produced for every mole of $PbF_2(s)$ which dissolves, $[Pb^{2+}(aq)] = 2.6 \times 10^{-3}$ M and $[F^{-}(aq)] = (2 \times 2.6 \times 10^{-3}) = 5.2 \times 10^{-3}$ M. Hence,

$$K_{\rm sp} = (2.6 \times 10^{-3}) \times (5.2 \times 10^{-3})^2 = 7.0 \times 10^{-8}$$

$$K_{\rm sp} = 7.0 \times 10^{-8}$$