• The major pollutants NO(g), CO(g), NO₂(g) and CO₂(g), which are emitted by cars, can react according to the following equation.

Marks 5

$$NO_2(g) \,+\, CO(g) \,\rightarrow\, NO(g) \,+\, CO_2(g)$$

The following rate data were collected at 225 °C.

Experiment	$[NO_2]_0$ (M)	[CO] ₀ (M)	Initial rate (d[NO ₂]/dt, M s ⁻¹)
1	0.263	0.826	1.44×10^{-5}
2	0.263	0.413	1.44×10^{-5}
3	0.526	0.413	5.76×10^{-5}

1	0.263	0.826	1.44×10^{-5}		
2	0.263	0.413	1.44×10^{-5}		
3	0.526	0.413	5.76×10^{-5}		
Determine the rate law for the reaction.					
Calculate the value of the rate constant at 225 °C.					
		Answe	r:		
Calculate the rate of appearance of CO_2 when $[NO_2] = [CO] = 0.500$ M.					
		Answe	r:		
Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.					