•	The isomerisation of glucose-6-phosphate (G6P) to fructose-6-phosphate (F6P) is a key step in the metabolism of glucose for energy. At 298 K,		
	G6P <table-cell-rows> F6P</table-cell-rows>	$\Delta G^{\circ} = 1.67 \text{ kJ mol}^{-1}$	
	Calculate the equilibrium constant for this process at 298 K.		
		Answer:	
	What is the free energy change (in kJ mol ^{-1}) involved in a mixture of 3.00 mol of F6P and 2.00 mol of G6P reaching equilibrium at 298 K?		
		[.	
		Answer:	
Sketch a graph of G_{sys} versus "extent of reaction", with a curve showing how G_{sys} varies as G6P is converted to F6P. Indicate the position on this curve corresponding to 3.00 mol of F6P and 2.00 mol of G6P.			