- 3
- A 300.0 mL solution of HCl has a pH of 1.22. Given that the pK_a of iodic acid, HIO₃, is 0.79, how many moles of sodium iodate, NaIO₃, would need to be added to this solution to raise its pH to 2.00?

As $pH = -log_{10}([H_3O^+(aq)])$,

$$[H_3O^+(aq)]_{initial} = 10^{-1.22} = 0.0600 \text{ and } [H_3O^+(aq)]_{final} = 10^{-2.00} = 0.0100$$

The reaction table is:

	IO ₃ (aq)	H ₃ O ⁺ (aq)	+	HIO ₃	H ₂ O
initial	X	0.0600		0	large
final	x - 0.0500	0.0100		0.0500	large

The solution contains a weak acid (HIO₃ and its conjugate base (IO₃⁻). It is a buffer and can be treated using the Henderson-Hasselbalch equation,

$$\mathbf{pH} = \mathbf{pK}_{\mathbf{a}} + \log_{10}\left(\frac{[\mathbf{base}]}{[\mathbf{acid}]}\right)$$

$$2.00 = 0.79 + \log_{10}\left(\frac{(x - 0.0500)}{0.0500}\right)$$

 $\mathbf{x} = \mathbf{0.865} \mathbf{M}$

This concentration is present in 300.0 mL of solution so the number of moles of IO_3 which has been added is,

number of moles = concentration \times volume = 0.865 \times 0.3000 = 0.260 mol

Answer: 0.260 mol