• Zinc sulfate (0.50 g) is dissolved in 1.0 L of a 1.0 M solution of KCN. Write the chemical equation for the formation of the complex ion $[Zn(CN)_4]^{2-}$.

Marks

Calculate the concentration of $Zn^{2+}(aq)$ in solution at equilibrium. Ignore any change K_{stab} of $[\text{Zn}(\text{CN})_4]^{2-} = 4.2 \times 10^{19} \text{ M}^{-4}$. in volume upon addition of the salt.

The formula mass of ZnSO₄ is 65.39 (Zn) + 32.07 (S) + 4×16.00 (O) = 161.46.

0.50 g therefore corresponds to:

number of moles = $\frac{\text{mass}}{\text{formula mass}} = \frac{0.50 \text{ g}}{161.46 \text{ g mol}^{-1}} = 0.0031 \text{ mol}$

As $K_{\text{stab}} = 4.2 \times 10^{19}$ and is *very* large, the reaction essentially goes to completion. The reaction requires a 4:1 ratio CN^{-} : $Zn^{2+}(aq)$ ions and as 0.0031 mol of Zn^{2+} and 1.0 mol of CN⁻ are present, CN⁻ is in excess.

Let the tiny amount of uncomplexed $Zn^{2+}(aq)$ and its concentration in 1.0 L be:

amount of
$$\operatorname{Zn}^{2+}(\operatorname{aq}) = x$$
 mol and $[\operatorname{Zn}^{2+}(\operatorname{aq})] = \frac{\operatorname{number of moles}}{\operatorname{volume}} = \frac{x}{1.0}$ M

The amount of $[Zn(CN)_4]^{2+}(aq)$ formed is therefore:

amount of $[Zn(CN)_4]^{2-}(aq) = (0.0031 - x) \sim 0.0031$ mol as x is so small.

Hence,

$$\left[\left[Zn(CN)_4\right]^{2+}(aq)\right] \sim \frac{0.0031}{1.0} = 0.0031 \text{ M}$$

Formation of 0.0031 mol of $[Zn(CN)_4]^{2-}(aq)$ requires $(4 \times 0.0031) = 0.012$ mol of cyanide, leaving:

amount of CN⁻ = (1.0 – 0.012) = 0.99 mol and [CN⁻(aq)] =
$$\frac{0.99}{1.0}$$
 M

Hence,

$$K_{\text{stab}} = \frac{[[\text{Zn}(\text{CN})_4]^2(\text{aq})]}{[\text{Zn}^{2+}(\text{aq})][\text{CN}^{-}(\text{aq})]^4} = \frac{(0.0031)}{(\text{x})(0.99)^4} = 4.2 \times 10^{19}$$

$$x = 7.7 \times 10^{-23}$$
 mol and so $[Zn^{2+}(aq)] = 7.7 \times 10^{-23}$ M

Answer: 7.8×10^{-23}