• Nitric oxide, a noxious pollutant, and hydrogen react to give nitrous oxide and water according to the following equation.

$$2NO(g) + H_2(g) \rightarrow N_2O(g) + H_2O(g)$$

The following rate data were collected at 225 °C.

Experiment	[NO] ₀ (M)	[H ₂] ₀ (M)	Initial rate (d[NO]/dt, M s ⁻¹)
1	6.4×10^{-3}	$2.2 imes 10^{-3}$	$2.6 imes 10^{-5}$
2	$1.3 imes 10^{-2}$	$2.2 imes 10^{-3}$	$1.0 imes 10^{-4}$
3	$6.4 imes 10^{-3}$	4.4×10^{-3}	$5.1 imes 10^{-5}$

Determine the rate law for the reaction.

Between experiments 1 and 2, $[H_2]_0$ is constant. Doubling $[NO]_0$ leads to the rate increasing by a factor of four. The rate is second-order with respect to NO.

Between experiments 1 and 3, $[NO]_0$ is constant. Doubling $[H_2]_0$ leads to the rate doubling. The rate is second-order with respect to H_2 .

rate = $k[NO]^2[H_2]$

Calculate the value of the rate constant at 225 °C.

Using experiment 1, the rate is 2.6×10^{-5} M s⁻¹ when [NO]₀ = 6.4×10^{-3} M and [H₂]₀ = 2.2×10^{-3} . Hence,

 $2.6 \times 10^{-5} \text{ M s}^{-1} = k(6.4 \times 10^{-3} \text{ M})^2 \times (2.2 \times 10^{-3} \text{ M})$ $k = 290 \text{ M}^{-2} \text{ s}^{-1}$

The units of *k* are found by requiring that the units in the rate law balance:

-d[NO]/dt = k[NO]²[H₂] M s⁻¹ = (units of k) × (M)² × (M) units of k = M⁻² s⁻¹

Answer: **290** M⁻² s⁻¹

THE ANSWER CONTINUES ON THE NEXT PAGE

Marks 5 Calculate the rate of appearance of N₂O when [NO] = $[H_2] = 6.6 \times 10^{-3}$ M.

As $-d[NO]/dt = 290[NO]^{2}[H_{2}],$

 $-d[NO]/dt = (290 \text{ M}^{-2} \text{ s}^{-1}) \times (6.6 \times 10^{-3} \text{ M})^2 \times (6.6 \times 10^{-3} \text{ M}) = 8.3 \times 10^{-5} \text{ M s}^{-1}$

From the chemical equation, two NO are lost for every one N_2O that is made. Hence the rate of appearance of N_2O is half this value:

-d[NO]/dt = $\frac{1}{2} \times 8.3 \times 10^{-5} \text{ M s}^{-1} = 4.1 \times 10^{-5} \text{ M s}^{-1}$

Answer:
$$4.1 \times 10^{-5} \text{ M s}^{-1}$$

Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.

 $\begin{array}{ll} \text{NO} + \text{NO} &\rightleftharpoons & (\text{NO})_2 & (\text{fast}) \\ (\text{NO})_2 + \text{H}_2 & \twoheadrightarrow \text{N}_2 \text{O} + \text{H}_2 \text{O} & (\text{slow}) \end{array}$

The second step is rate determining as it is slow. For this elementary step, the rate law can be written down using the stoichiometry of the reaction equation:

rate =
$$k_2[(NO)_2][H_2]$$

If the equilibrium in the first step is rapidly obtained then,

$$K_{eq} = \frac{[(NO)_2]}{[NO]^2}$$
 or $[(NO)_2] = K_{eq}[NO]^2$

Substituting this back into the rate law for the rate determining step gives,

rate =
$$k_2[(NO)_2][H_2] = k_2 \times K_{eq}[NO]^2 \times [H_2] = k_{eff}[NO]^2[H_2]$$

This rate law is consistent with the one determined experimentally and so the proposed mechanism is consistent.