	p in the metabo roup in a dehyd	0		ogical systems is the a eaction:	ddition of a	
gluco	$ose(aq) + H_2PQ$	$D_4(aq) \leftarrow$	[gluco	ose phosphate] ⁻ (aq) +	$H_2O(1)$	
reaction is d	riven forwards	by harnessing	the free	ion is $\Delta G^{\circ} = 13.8$ kJ m energy associated with denosine diphosphate,	n the	
ATP ⁴⁻ (aq)	+ H ₂ O(l) =	\rightarrow ADP ³⁻ (aq)	$+ H_2F$	$PO_4^{-}(aq) \qquad \Delta G^\circ = -$	30.5 kJ mol^{-1}	
The overall	reaction is thus	:				
	e equilibrium c			phosphate] ⁻ (aq) + Al this overall reaction a		
	ll reaction is th			ΔG	^{co} (kJ mol ⁻¹)	
			-	sphate] ⁻ (aq) + $H_2O(l)$	13.8	
	$\frac{\text{ATP}^{4-}(\text{aq}) + \text{H}_2\text{O}(\text{l})}{\text{glucose}(\text{aq}) + \text{ATP}^{4-}(\text{aq})} \xrightarrow{\text{-30.5}} [\text{glucose}(\text{aq}) + \text{ATP}^{4-}(\text{aq})] \xleftarrow{\text{-16.7}} [\text{glucose}(\text{phosphate})^{-}(\text{aq}) + \text{ADP}^{3-}(\text{aq})] \xrightarrow{\text{-16.7}} [\text{glucose}(\text{phosphate})^{-}(\text{glucose}(\text{phosphate})^{-}(\text{glucose}(\text{phosphate})^{-}(\text{glucose})^{-}(\text{glucose}(\text{phosphate})^{-}(\text{glucose}(\text{phosphate})^{-}(\text{glucose})^{-}$					
glucose(aq)+ATP ⁴⁻ (aq)	figlucose	phosp	hate] ⁻ (aq)+ADP ³⁻ (aq)	-16.7	
$\Delta G^{\circ} = -\mathbf{RT}$,	5)) kJ mol ⁻¹ = -16.7 kJ K = e ^{6.48} = 652	∫ mol ⁻¹ . Using	
		(••• -••)				
		er: $K = 652$ (no units)				
flask contain	ning 175 mL of of the ATP ^{4–} wi	a 0.0500 M aq	lueous s	by adding 0.0100 mol o olution of glucose at 3 d when the system reac	7 °C. What	
The initial table is the		of ATP ⁴⁻ is $\frac{\hbar}{V}$	$\frac{1}{2} = \frac{0.0}{0}$	$\frac{100 \text{ mol}}{0.175 \text{ L}} = 0.0571 \text{ M}.$	The reaction	
	glucose(aq)	ATP ⁴⁻ (aq)		[glucose phosphate] [–] (aq)	ADP ³⁻ (aq)	
initial	0.0500	0.0571		0	0	
change	-X	-X		+ <u>x</u>	+ <u>x</u>	
quilibrium At equilib	0.0500-x rium,	0.0571-x		X	X	
$K = \frac{[g]}{[g]}$	u cos e - phospl	hate ⁻ (aq)][AD	P ³⁻ (aq	$\frac{x^2}{(0.0500 - x)(0.057)}$	= 652	
	[glu cos e(a	nq)][ATP ⁴⁻ (aq	D]	(0.0500 - x)(0.057)	(1-x)	
		~~~~		ON THE NEXT PAGE	_	

As the equilibrium constant is large so is x and this expression cannot be approximated. Instead, the full quadratic equation must be solved.

 $x^2 = 652(0.0500-x)(0.0571-x)$  or

 $651x^2 - 652(0.0500 + 0.0571) + (652 \times 0.0500 \times 0.0571) = 0$ 

The two roots are  $x_1 = 0.0578$  M and  $x_2 = 0.0495$  M. As  $x_1$  gives a negative [glucose(aq)], it is not physically significant. As x is the concentration consumed, using  $x_2$  gives:

percentage of ATP⁴⁻(aq) consumed =  $\frac{0.0495 \text{ M}}{0.0571 \text{ M}} \times 100\% = 87\%$ 

Answer: **87%** 

Suggest two simple ways of further reducing the remaining percentage of ATP⁴⁻.

The remaining ATP⁴⁻ can be reduced by (i) adding more glucose and (ii) reducing the temperature. Removal of either product would also drive the reaction to the right but would be very difficult to achieve in practice.