- The isomerisation of glucose-6-phosphate (G6P) to fructose-6-phosphate (F6P) is a key step in the metabolism of glucose for energy.

$$
\mathrm{G} 6 \mathrm{P} \rightleftharpoons \mathrm{~F} 6 \mathrm{P}
$$

At 298 K , the equilibrium constant for the isomerisation is 0.510 . Calculate the value of ΔG° at 298 K .

$$
\begin{aligned}
\Delta G^{\circ} & =-R T \ln K=-\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(298 \mathrm{~K}) \times \ln (0.510) \\
& =+1670 \mathrm{~J} \mathrm{~mol}^{-1}=+1.67 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

$$
\text { Answer: }+\mathbf{1 . 6 7} \mathbf{~ k J ~ m o l}^{-1}
$$

Calculate ΔG at 298 K when the [F6P] / [G6P] ratio $=10$.
The reaction quotient, for the reaction, is $Q=\frac{[F 6 P]}{[G 6 P]}=10$
Using $\Delta G=\Delta G^{\circ}+R T \ln Q$,

$$
\begin{aligned}
\Delta G & =\left(+1.67 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}\right)+\left(8.314 \times 298 \mathrm{~J} \mathrm{~mol}^{-1}\right) \times \ln (10) \\
& =+7400 \mathrm{~J} \mathrm{~mol}^{-1}=+7.4 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

Answer: $\mathbf{+ 7 . 4} \mathbf{~ k J ~ m o l}^{-1}$
In which direction will the reaction shift in order to establish equilibrium? Why?
As ΔG is positive, the forward reaction is non-spontaneous and the backward reaction is spontaneous. The reaction thus shift backwards, increasing [G6P] and reducing [F6P] until $Q=K$.

Sketch a graph of $G_{\text {sys }}$ versus "extent of reaction", with a curve showing how $G_{\text {sys }}$ varies as G6P is converted to F6P. Indicate the position on this curve corresponding to the point where $[\mathrm{F} 6 \mathrm{P}] /[\mathrm{G} 6 \mathrm{P}]$ ratio $=10$. Indicate on the graph that section of the curve where $Q>K$.

