•

		Maalaa
The solubility product constant of AgCl is $K_{sp} = 1.8 \times 10^{-10} \text{ M}^2$. Using the relevant electrode potentials found on the data page, calculate the reduction potential at 298 K of a half-cell formed by: (a) an Ag electrode immersed in a saturated solution of AgCl		6 6
(a) an Ag electrode miniersed in a saturation	ed solution of Agel.	_
	[-
	Answer:	
(b) an Ag electrode immersed in a 0.5 M solution of KCl containing some AgCl		-
precipitate.		
		-
	Answer:	
Each of these half-cells is connected to a standard $Cu^{2+}(1 \text{ M})/Cu(s)$ half-cell. In which half-cell, (a) or (b), will clear evidence of a reaction be seen? Describe the change(s) observed.		
		1