Marks • Nitric oxide, a noxious pollutant, and hydrogen react to give nitrous oxide and water 5 according to the following equation. $2NO(g) + H_2(g) \rightarrow N_2O(g) + H_2O(g)$ The following rate data were collected at 225 °C. Initial rate (d[NO]/dt, M s^{-1}) Experiment $[NO]_0(M)$ $[H_2]_0(M)$ $2.2 imes 10^{-3}$ 2.6×10^{-5} 6.4×10^{-3} 1 1.3×10^{-2} 2.2×10^{-3} 1.0×10^{-4} 2 $4.4 imes 10^{-3}$ 5.1×10^{-5} 6.4×10^{-3} 3 Determine the rate law for the reaction.

Calculate the value of the rate constant at 225 °C.

Answer:

Calculate the rate of appearance of N₂O when $[NO] = [H_2] = 6.6 \times 10^{-3}$ M.

Answer:

Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.