	_c Marks
• The first step in the metabolism of glucose in biological systems is the addition phosphate group in a dehydration-condensation reaction:	of a 6
glucose(aq) + $H_2PO_4^{-}(aq) \iff [glucose phosphate]^{-}(aq) + H_2O(l)$	
The free energy change associated with this reaction is $\Delta G^{\circ} = 13.8 \text{ kJ mol}^{-1}$. The reaction is driven forwards by harnessing the free energy associated with the hydrolysis of adenosine triphosphate, ATP^{4-} , to adenosine diphosphate, ADP^{3-} : $ATP^{4-}(2q) + H_2O(1) \implies ADP^{3-}(2q) + H_2PO_{-}(2q) = AG^{\circ} = -30.5 \text{ kJ}$	ne mol ⁻¹
The overall reaction is thus: $ADI (aq) + H_2 I O_4 (aq) = -30.5 \text{ KJ}$	mor
glucose(aq) + $ATP^{4-}(aq) \iff [glucose phosphate]^{-}(aq) + ADP^{3-}(aq)$ Calculate the equilibrium constant associated with this overall reaction at body temperature (37 °C).)
A	
Allswer:	
This overall equilibrium reaction is investigated by adding 0.0100 mol of ATP^4 flask containing 175 mL of a 0.0500 M aqueous solution of glucose at 37 °C. W percentage of the ATP^{4-} will have been consumed when the system reaches equilibrium?	⁻ to a Vhat
Answer:	
Suggest two simple ways of further reducing the remaining percentage of ATP ⁴	