• Strontium-90 is one of the harmful nuclides resulting from nuclear fission explosions. Strontium-90 decays by beta particle emission with a half-life of 28.0 years. How long (in years) would it take for 99.0% of a sample of strontium-90 released in an atmospheric test of an atomic bomb to decay? The number of nuclei at time t, N_t, is related to the number of nuclei present at $t = 0, N_0$ by: $\ln\left(\frac{N_0}{N_t}\right) = \lambda t$ where λ is the activity constant. The half life, $t_{1/2}$, corresponds to the time required for half of the sample to decay: $\frac{N_0}{N_t} = 2$ and so $t_{1/2} = \frac{\ln 2}{\lambda}$. Hence, $\lambda = \frac{\ln 2}{t_{1/2}}$ If 99.0% of the sample has decayed, 1.0% is remaining and so $\frac{N_0}{N_t} = \frac{100}{1}$: $\ln\left(\frac{100}{1}\right) = \frac{\ln 2}{(28.0 \text{ years}^{-1})} \times t$ or t = 186 years.