- 3
- A standard test for the presence of chloride ion in water involves the appearance of a precipitate of AgCl upon addition of 0.05 mL of AgNO₃ (0.03 M) to 100 mL of sample. What is the minimum concentration of Cl⁻ detectable by this method? The K_{sp} of AgCl = 1.8×10^{-10} .

The number of moles of $Ag^+(aq)$ in 0.05 mL of a 0.03 M solution of $AgNO_3(aq)$ is:

number of moles = concentration × volume = $(0.03 \text{ mol } L^{-1}) \times (0.05 \times 10^{-3} \text{ L}) = 1.5 \times 10^{-6} \text{ mol}$

When this is added to 100. mL of the sample:

 $[Ag^{+}(aq)] = number of moles / volume$ = (`1.5 × 10⁻⁶ mol) / (0.100 L) = 1.5 × 10⁻⁵ M

For AgCl(s), $K_{sp} = [Ag^+(aq)][Cl^-(aq)]$ and so:

 $[Cl^{-}(aq)] = K_{sp} / [Ag^{+}(aq)] = 1.8 \times 10^{-10} / 1.5 \times 10^{-5} = 1.2 \times 10^{-5}$

Answer: 1.2×10^{-5}