- 4
- A melt of NaCl is electrolysed for 35 minutes with a current of 3.50 A. Calculate the mass of sodium and volume of chlorine at 40 °C and 1.00 atm that are formed.

The number of moles of electrons delivered by a current, *I*, of 3.50 A in 35 minutes is:

number of moles of electrons
$$=\frac{It}{F}=\frac{(3.50 \text{ A})(35 \times 60 \text{ s})}{(96485 \text{ C mol}^{-1})}=0.076 \text{ mol}$$

The overall electrolysis reaction, NaCl(l) \rightarrow Na(s) + $\frac{1}{2}Cl_2(g)$, corresponds to reduction of Na⁺ and oxidation of Cl⁻:

 $Na^+ + e^- \rightarrow Na$ and $Cl^- \rightarrow \frac{1}{2}Cl_2 + e^-$

As one mole of electrons would produce one mole of Na and half a mole of Cl₂:

number of moles of Na = 0.076 mol

number of moles of $Cl_2 = \frac{1}{2} \times 0.076$ mol = 0.038 mol

The mass of Na produced is therefore:

mass of Na = number of moles × atomic mass

$$= (0.076 \text{ mol}) \times (22.99 \text{ g mol}^{-1}) = 1.8 \text{ g}$$

Using the ideal gas law, PV = nRT, the volume of Cl₂ produced is:

$$V = \frac{nRT}{P} = \frac{(0.038 \text{ mol})(0.08206 \text{ L atm } \text{K}^{-1} \text{ mol}^{-1})(313 \text{ K})}{(1.00 \text{ atm})} = 0.98 \text{ L}$$