- Marks 2
- A concentration cell containing aqueous solutions of Cu(NO₃)₂ and solid copper metal is constructed so that the Cu²⁺ ion concentration in the cathode half-cell is 0.66 M. Calculate the concentration of the Cu²⁺ ion in the anode half-cell if the cell potential for the concentration cell at 25 °C is 0.03 V.

The cathode and anode reactions are: $Cu^{2+}(aq) + 2e^{-} \Rightarrow Cu(s) \quad (cathode)$ $Cu(s) \Rightarrow Cu^{2+}(aq) + 2e^{-} \quad (anode)$ The standard electrode potential $E^{\circ} = 0$ V and the potential can be calculated using the Nernst equation for this 2 electron reaction, n = 2: $E = E^{\circ} - \frac{RT}{nF} \ln Q = -\frac{RT}{nF} \ln \left(\frac{[Cu^{2+}(aq)]_{anode}}{[Cu^{2+}(aq)]_{cathode}} \right)$ $= -\frac{(8.314 \text{ J K}^{-1} \text{ mol}^{-1})(298 \text{ K})}{(2 \times 96485 \text{ C mol}^{-1})} \ln \left(\frac{[Cu^{2+}(aq)]_{anode}}{0.66} \right) = +0.03 \text{ V}$ This gives $[Cu^{2+}(aq)]_{anode} = 0.06 \text{ M}.$

• In **acid solution**, dichromate ion oxidises iron(II) to iron(III) as illustrated in the partial equation:

 $Fe^{2+} + Cr_2O_7^{2-} \rightarrow Fe^{3+} + Cr^{3+}$

Write a balanced equation for this reaction.

The half reactions are:

$$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$$

 $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$

where H^+ has been added to the $Cr_2O_7^{2-}/Cr^{3+}$ couple to give H_2O .

To balance the electrons, the first reaction needs to be multiplied by 6. Hence:

$$6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$$

What would happen to the cell potential if the concentration of Cr^{3+} were increased?

It would decrease. If [Cr³⁺] is increased, Le Châtelier's principle predicts that the reaction will shift towards reactants, reducing the cell potential.

3