• Nitric oxide reacts with ozone according to the following equation.

$$NO(g) + O_3(g) \rightarrow NO_2(g) + O_2(g)$$

The following rate data were collected at a specified temperature.

Trial	Initial[NO] (M)	Initial [O ₃] (M)	Initial rate of reaction (M s^{-1})
1	$2.1 imes 10^{-6}$	$2.1 imes 10^{-6}$	1.6×10^{-5}
2	$6.3 imes 10^{-6}$	$2.1 imes 10^{-6}$	$4.8 imes 10^{-5}$
3	$6.3 imes 10^{-6}$	$4.2 imes 10^{-6}$	9.6×10^{-5}

What is the experimental rate law for the reaction?

Rate = $k[NO]^{x}[O_{3}]^{y}$

Between trials (1) and (2), $[O_3]_{initial}$ is constant and $[NO]_{initial}$ is tripled. This leads to the rate tripling: x = 1.

Between trials (2) and (3), [NO]_{initial} is constant and $[O_3]_{initial}$ is doubled. This leads to the rate doubling: y = 1.

Hence:

rate = $k[NO][O_3]$

What is the value of the rate constant of this reaction?

Using trial (1),

$$k = \frac{\text{rate}}{[\text{NO}][\text{Cl}]} = \frac{1.6 \times 10^{-5} \text{ M s}^{-1}}{(2.1 \times 10^{-6} \text{ M})(2.1 \times 10^{-6} \text{ M})} = 3.6 \times 10^{6} \text{ M}^{-1} \text{ s}^{-1}$$

Answer: $3.6 \times 10^{6} \text{ M}^{-1} \text{ s}^{-1}$