- Marks 5
- The freezing point of a sample of seawater is measured as -2.15 °C at 1 atm pressure. Assuming that the concentrations of other solutes are negligible, and that the salt does not significantly change the density of the water from 1.00 kg L^{-1} , determine the concentration (in mol L^{-1}) of NaCl in this sample. (The molal freezing point depression constant for H₂O is 1.86 °C m⁻¹) The freezing point depression, $\Delta T_{\rm f}$, is given by, $\Delta T_{\rm f} = K_{\rm f} m$ where $K_{\rm f}$ is the molal freezing point depression and *m* is the molality. The molality is the number of moles of particles dissolved in a kilogram of solvent. If $\Delta T_{\rm f} = 2.15 \,^{\circ}{\rm C}$ and $K_{\rm f} = 1.86 \,^{\circ}{\rm C} \,{\rm m}^{-1}$: $m = \Delta T_{\rm f} / K_{\rm f} = (2.15 \,{}^{\circ}{\rm C}) / (1.86 \,{}^{\circ}{\rm C} \,{\rm m}^{-1}) = 1.156 \,{\rm m}^{-1} = 1.156 \,{\rm mol} \,{\rm kg}^{-1}$ A mole of NaCl dissolves to give two particles (Na⁺ and Cl⁻) so (1.156 / 2) mol = 0.578 mol of NaCl per kilogram of water is needed. As the density of the solution is 1.00 kg L^{-1} , a kilogram of solution has a volume of one litre. Hence: concentration required = $0.578 \text{ mol } \text{L}^{-1}$ Answer: $0.578 \text{ mol } \text{L}^{-1}$ In principle, it would be possible to desalinate this water by pumping it into a cylindrical tower, and allowing gravity to push pure water through a semipermeable membrane at the bottom. At 25 °C, how high would the tower need to be for this to work? (The density of liquid Hg at 25 °C is 13.53 g cm^{-3} .) The osmotic pressure, Π , is given by $\Pi = cRT$ where c is the concentration of the particles. From above, $c = (2 \times 0.578)$ mol L⁻¹ and so: $\Pi = (2 \times 0.578 \text{ mol } \text{L}^{-1}) \times (0.08206 \text{ atm } \text{L mol}^{-1} \text{ K}^{-1}) \times (298 \text{ K}) = 28.3 \text{ atm}$ As 1 atm = 760 mmHg, this corresponds to (28.3×760) mmHg = 21500 mmHg. Considering the relative densities of water and Hg, the height of water required to exert this pressure would be: 21500 mmHg = $(21500 \times \frac{13.53}{1.000})$ mmH₂O = 291000 mmH₂O or 291 mH₂O. The tower would need to be 291 m in height. Answer: 291 m